ULTIMATE

SOLID

EI:J‘I? 1

Developer .
gwde |

ver. 7.0.0

ULTRAATE

SOLID

Table of Contents:

14N o To [Vt 4 ' Yo 8
Ultimate AEGIS® Archite@CtUre.......ccciiiiiiiiiiiiiiiiiciicececeeeeeeeseeseseseseeseeeeseseeseesssessssessssessssssasssesssssssaseees 13
Composition logic of Ultimate AEGIS® - based SOIULIONS......ccccuuecieiiiiiiireeericecreerrereeeneeeseeeeesnnansnees 14

DEVEIOPETeueeeeeeeeeeeieeeenrrnneeeeeeeeecessssnnneseeesessssssssassesseesessssssasssseessessssssssasssessesessssssasssasessessssssnnannanss 16
FIrSt SO PS ceneiiiiieiiriiiiiiieieierrreee e s reees e s renassesrennssesrennssesreansssssennsssssennsssssennsssssennsssssennsssssennsssssennnns 16

Means of the subject area desCription..............cueeeeeeeeeeeeeeerereeeeesseeisssseseesmsssssssssssessmnsssssssssssssnns 16
DT Kot A oY 0 =] 1= N 17
01 =1 E PO P PP UPPPPPPPRR 17
Do Yo 8T ¢ =1 o | N 18

How to make simple metadata ODJECLS...............coueeeuueeeeeenirieeeriirireeiiisieeeniersseessissseessesssnnssssssnnns 24
(2 (oY VYA Lol o T i o [Toi o] g - oV PR 24

Adding a dictiona@ry t0 the INterfacCe.uueeeeieieeeeiiiiieee e eeeeecteeee e e ettt e e e e aaaeeaans 27
ISSUING Of POIMIUSSIONS ..ottt e e e ee e e et e e e e tee e e e raee e e e earae s 28
Editing of standard dictionary SCreen fOIrMSuuuueeeeeeeieeeiiiiiiieeeeeeeeeiiiiieeeeeeeeeesians 29
HOW t0 MaKe liNK tabl@S...... i e e e et e e e e aaaaes 30
HOW t0 MaKe @ dOCUMIENT. ..ceiiiiiiiiii ettt e e et e et e e s e e e eeeabba e es 32
[(oY VYA Lol g T (I do] -1 AU 36

Scripts, hANdling Of SYSTEM @VENLS.........ccueeeeeeuereirerrerreieeirseieerseteeenssssisssseessssmsssssssssssssssnnsssssssnes 38
(070] 1 0100 T=Ta Vo KR0S U 40
o T 0 A o 5 TP PRPPPPRS 41

SCrIPS Of QICHIONAIIES.cceevveeeeeeeee ettt e e ettt e ettt e e ettt e e e eeeareaaaeareanan 42
SCriPES Of DOCUMENES....ciiiiiiiiee et e e et e e e e e e e e e ee ittt eeeeeeeeseesstaaeeeeaaeens 43
SEIVICES AN INTEITACES .. ciiiii et e et e e e et e e e e et e e e e et e e e eataeeeeataaaaes 45
o1 =1 £ PP PPPPPPPRRN 46

Creating SimPle COMMANGS.............ccovvvvereeuriiiiiiiirireeiiiisisiiisisnniiiisssssisssssmsssssssssssssssnsssssssssssssns 46
Creating @ COMMANG........i i e e e e e e e e e e e et e e e e et e e e e saaaeeeeeaanes 47
Adding acommand to the iINTErfaCe.......ooovui i i e 47
ISSUING Of PEIMISSIONS. . i iiiiiiiiiiiee e e e et e e e e e e e e ettt eeeeeeeeeabra e nas 48
o [a a T oY= Yol 1 o) TR 49
Accessing data Via LINQL.......iiiiiiieciii et e et e e e et e e e et e e e et e e e aaaeeeeaan 51
1@ o 8= =T 52
Additional ParamMeters QUETY.....uu. i iiiii ettt e e et e e et e e e et e e e et e e eaaaeeeenan 52

[0 T2RV72Y [T oY= g oY1 PO 54
1 L1 o 1o [1 £ PN 55
Dot uTo] =T =T SO PPTP TP 56
DiCtioNQrY rECOIA CIASS.......ccceeeeeeeeeeee ettt e et e e e e tee e e e etee e e et 65
T =1 o] 1SS PPPPPPPPRS 66
(0o KXY B [12] @ 1]] (=2 d=Tole] F 68
[DToTolB] 4 aT=T o) B nY/ o =T PO PP 69
[0 o YotV [£ T=1 4 L i (o KX T 77
=] o] £ o= £ PPN 78
(0o KXo} (o] o] (=3 oY [a il {=lole] ' FOO 79
L] = PP PP PPPPPPPPPRt 80

© 2018 Ultimate

REPOIES ON tNE LOLAIS.....cceeeeeeeeeeeee ettt e ettt e e e e e et eee e e e e e e eeaaanas 84
TOLAI ErANSACLION ClOSS.....uueeeeeeiiiiiiiieeee ettt e ettt e e e e e e ettt e s e s e e e e e eaataanaeeees 86
REPOIT EYPOS. ..ottt ettt et es et e et e et e e et e e et s e et e e e e renaes 87
MeEtadata Validation.......ooiiiiiiiiiiis e e e e et e e e e e e e e s 90
(Y T = To E Y = 61 Lo T 1 Y- OO PP PO PPPPPPPPPPRPPPPPRS 91
VAT g AU | I o) -1 PO UPPUPPPPRTN 92
SEIUCLUIE OVEIVIBW.....c..ceeeeeeieeeeeeeee ettt ettt et e et e et e e e taeeeas e st e sesaeeernaes 93
EXAMPIE: PrOfitsS QNA IOSSES.......uceeeeeee ettt et e e et e e e 94

T Yols 174§ [o] B PP 96
Virtual total description [aNGUAGE..............ccuvueeeeeeiie ettt e et e e e ariaaaaans 97
TOLAI SOUICES, filLOIS....ccoevvveeeieiiieeeieieeeeeeee ettt 98
GIOUPD SOUICES...ccueeeeieeie ettt e et e et e e e tee st e st e et e e et te e te et s asastaastaastestsstssseenns 99
o= [Tole [=2 101
GIOIMIMIQL .ottt ettt et et e et e et s e et e e aaeeenaes 101
Detailed description of metadata ClasSes.......uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiireeeeeieieeerereeeeeeerereeere.. 103
DictioNAry r€COIA CIASS........ccceeeeeeeeeeee ettt ettt ee e ettt e e tee e e eateeeaeaaaas 103
Class Of liNk tabIe reCOId..........ccoveveveeeieiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeee ettt 107
DOCUMENT CIASS c.ccovvviiieieee ettt e ettt se e e e e e e et tsss e e s e e s seatataassesaaaaanins 111
Class of table part reCord.............oouueveeeieieieieiiiiiiiiiiieieeeeeeeeeeeeeeeeee ettt 119
TOAI trANSACLION ClOSS ..ccvvvvveeeeeeeiieeiieeee ettt e e et ese e e e e e e e et tse s e e e e e seaisians 125

(8] [I =X 0 (=X Yol g oY e o PO 131
SCHIPES oeeeeeeeeeeeee et eesreceeeseeceeessenessessenessssrenssssssenssssssensssssmensssssmenssssssenssssnsensssssssnnssnnsnnnns 135
Y VLol c I T o I T L =T o =1 K 146
SOIVICES ..ottt ettt e e et e et et e et e e et a et s 146

L (=T o Lol =X TR 147
IMODIIE SEIVICES ...ccvvvvvvieeeeeeeeeeeeee ettt e e e ettt se e e e e e e et tbsse s e s e e e seatataaesesaaaaanins 148
IMODIIE INEEITACES. ... ettt 150
K@INEI SEIVICES ..ccccvvveiiieeee e ettt ettt e e e e e ettt ese e e e e e e e et tess s e e e e e seetstasssesaaaaansns 151
WD SEIVICES.....ccceeveeeeeeee ettt e e e e ettt e e e e e e e ettt eae e e e e e aesattaaaaeeaaaeeesans 152
US@ Of SEIVICES. ...cccuuoeeeeeee ettt et e et e e ettt e e e et e e e et te e e e e et e e e e et s 162
1Y 2N 2 qe] oY g =T o [=] o TV o o 1 1o TP 162
Data acCess MEhOUSt e e e e e e e e e e e e aaabaaas 165
IDocumentManager and IDictionaryManager interfaces_2............cccccuueueeeueuevuvuuenunnnnns 166
LINQ QUEIIES....ceeveeeeeeeeee et eee et ee et e ettt et e et tte et aee e et e st e et saetaeesteastnasatsaeaennaes 170

Yo =TV o= 172
0PeNiNgG Of NEW trANSACLION.cceeeereeeeeiieee et e et e e ettt e e e tte e e e e teeeeaeataeaaans 174
PAralle] @XECULE FEQUESTcceeeeeeeeee ettt ettt e e e e e et eee e e e e e e e ettt saaeeaaaaeesans 175
=] TSSO PUPPUPRTSUPPPPIRPIN 176

Ny oL | ETa T ==Y S TR 177
LFY0 14 011 Lo T e Lo =] (O 178
(@0 =Te Lo Lo T4 1Y o oL T 1= ST 180
JCIUSTOISEIVICE. ...ccvvvviiieeeee ettt e e e e e ettt se e e e e e e e et tbsss s e s e e e seetataaasesaaaaanins 180

© 2018 Ultimate

JCONSEANTMGNAGEL ..ottt e e e eennas 181
IDictionaryCommaANAMOANGGErceeeeuueeeeeiee e eeie e e eeee e e aee e e ttee e e e aeeeeaaaeeeaeaaaas 183
IDictionaryListCOMMANAMOANAGELuuuuuuuuuuuiiiiiiiiiiiaiiiieiiiisiaaaisaiiaissasasnsaesasanasiaaaans 184
IDocumentCommaANAdMEANAGEN...........ccceeuueeeeeiieeeeeee e eeee ettt e ettt e e e e tee e e aaaeeeaeaaaas 184
IDocumentListCOMMANAMONAQGELuuuuuuuuuiuiiiiiiiiiiaiiaiaeaiiisisaasasasaassasasssaananiaesanaaans 185
JEMIQUISEIVICE....ceeevveeeiiieeee ettt ettt e ettt s e e e e e e e e et s s e s e e e seatstaassesaaaaanins 186
JEXDOIEMIQNGGEL ... oottt ettt e e e e eennas 187
TN 0] Qe o] (=11 o T Lo Lo =] U 188
[T Roo [0 L=Tao Yol W TR Xe 11V Lo o Lo To I-1 O RP 189
LIV od] fole 1 a (o] R Y= 4] (ol =X 191
L A TaN 1Y o T Lo Lo =] PP 192
ISINSS@IVICE ...ttt ettt e e et e e et tee s e e eaaae e e e eaaeeaeesaas 197
LKoY o] 1Y Lo T Lo Lo I=1 AT 197
TUSErCOMMANAMUEANGAGEL...........eeeeeeeeeeeeee et e et e e e ete e ettt e e e e aee e e aaaeeeaeaaaas 198
JUSEIMUONGAGEL ...ttt e e et e e et e e e e e eennas 198
JUSEIMESSAGES...c.uceeeeieiieeeeeee ettt ettt e e et ee et e et et te e te e teete et s et s esesssesasessneesnes 199
LaN =T o= Yot AV 2= oo 0 01 ' =10 Lo U 199
USEI COMMANGS......cooeeeeieeiiieee ettt e et se e e e e e e et tss s e e e e aeeasatans 199
Dictionary record COMMANUSuuuuuuuuuuiiiiiiiiiaiaiiiiieiiiaeaiiaaiaaaiaaaaaaseasaaabaesabaaenanaaans 202
Dictionary list COMMEANGAS............coeeeeeieeeeie ettt ettt e ettt e e e aee e e e e e aeaaaas 205
DOCUMENT COMMIANUS.....cccceeeeeeieeee e ettt e e ettt e e e e e ettt eee e e e e e e eestataaaeaaaaaeesans 207
Document liSt COMMOANGS...........uuuieeeeeieiiiiiiiiee e ettt e e e e e etess e e e e e e eeaiiaseseeaeaeanins 210
(8] =T 41 7 Yor o o o IS 212
[ETaTe 1= PP PPPPTPPPR 215
Dictionary @Vents NONAIBES.uuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiaiaeaaiabisaataiaaaisbaasbbbabsasbassaaaaaes 215
Document @Vents RANGICIS.............ccccevveeeeiiiiiieeeeeeieeiise e e eetese e e e e e eeaissse e e s aaaeanins 218
TEANSACLION SCHIDTS...ceeveeeeeeeie ettt ettt ettt e et e et e e e e e e ae e st e s eaaneesneesas 220
Peculiarities of recording traNSACLIONS.............cuuieieeuiieeiiiieeeeeiie e eetee e e eeee e e eaeeeaeaiaas 222
HANAIEIS Of tOtA] @VENTS......eveeeviiiiiiiiiiiietii s 223
EXCEPLION trANSIATOLS. ..cccevveeeeeeeee ettt ettt e ettt e et e e e aee e e e ateeeaeaaaas 223
ANQIYLIC COIUMNS PIOVIAELS ..ottt eee e e eaeaa e e e 225
TASKS ittt e e e et et e e e e et e et e e e e e e e eaatbaaaeeeaaaaaes 228
TOtals AN FEPOIES....ci i, 230
TOUQI AFIVEIS ettt e ettt ettt e e e e e ettt se e e e s e e e estabn s s e s eaaseesstaes 230
e K o oY g Ve 1 o [o L e 238
(000] [V To N T oY (o I=1 Nt 239
CUSTOM FEPOITS. ...t ettt e ettt e e ettt e e e et e e e eeaaneeees 241
o T a1 Fo 5 3o TP UPOPPTPPP 244

© 2018 Ultimate

LN =Y od = A o] o I = E] £ SPPPTT SRR 249
INEEGIALION tESES TOOIS.....cvveeeeeeee ettt ettt e et e e e et e e e et e e aeaaaas 250

(O oY Aol 4 e 1 £SO PP PP PTOPPRPPPPPPORt 255
DiCtioNQry @AItOF SCIPESeeeeeeeee ettt ettt e ettt e e et e e e e tee e e e aaeeeaeaaaas 255
DOCUMENT @AIEOI SCIIPES ... vttt 259

Update of script eXecution status.........cieiiiiiiiiiiiie e e 261
Script Updated ACroSS ClUSTEIS ... 261
External script @ditor SUPPOIT....... it e e e eeaa e 261
Translation Of @XCEPLIONS.ccccvvvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiriiiiiiisiiiiisiiisitisisitisssssssssssssssssssssssssens 263
LY=L Lo T I ol 1 L o N 265
RV A=Y & Lo 3 e Yo SRRt 266
RECOMPIIE Of SCIIDSceeeeeeeeeeeeee ettt ettt e ettt e et e e e e aee e e eateeeaeaaaas 267
Commitment of changes t0 CUITENT VEISIONuuuuuiiiiiiiiiiiiiiiiiiiiiiievibebebebeaebebebebebebeaeeeeeeene 267

Y oY =T oY =do) ARV Z=Y 5 To] T3 PNt 270
Script text coNflict re@SOIULION. ... 275
VAT o] o T 415y o o 7 U 277
Metadata €rror ChECK e e e e e e e e e e eaeaeeaas 279
LYY 6 Lo g T - =4O 279
PrediCOtes......ccccuuueeeeuunieeiiiiieienieniiseissssesesnnessssssssssssssnsssssssssssssssnnsssssssssssssssnsssssssssssssssnnsssssssssns 281
0T s Lol =KX 38 o Yo K 281
LN =T LYY 1Y PP 282
RiDBDON IMISC....covvvvernnueniiisnrnnnrnnueissssssrnemmssmeiisssssssmsssssmssssssssssesssssssssssssssssssssssssssssssssssnsssssssssss 283
oYl YL U 283
L= T=T 1 o U 283

[T F e U =T TSP UPRPTTR PN 284
RIS Lo T el g =T g F= =LY SO U 284

SP I CNECKET s 286
EXCEPLION traNSIatorsS. ... i e e e e e et e e et e e raraaaes 287

Y T e g Lo A A =T | e [T 4T o1 o] S PP PP PP O PP PUPPPPPRPPPPPRt 287
MEF EXPlorer —debUGINGcoeiii et e e e e eaa e 288
T =Y A=Y o] o =Yot £ PP PP P PO PPPUPPPPPPPPPPPRt 291

0] oY T=T ot A T3 U N 292
(2 e o 293
KERNEL SCREME.....cceuueeureiiiirniirnnunisiisisrniisssmessisssssssssssssmssssssssssesssssssssssssssssssssssssssssssssssnsssssssssss 296
D | I AV o1 ST PTUPRPTTRN 296

D] ToiuTo] - T 1T PP PP PPPP PP TPPPPTTRPPRt 296

[Yols 1174 § 1 [o T ISR 302

(Do Tol¥] 4 1= o | £ T TP OTRTUPTTPTR 303
)= 1 SRR 307
(6= T PP OPRTUPTRPTR 311
USEE PEOIMUSSIONSoeveeeeeeie ettt ettt ettt et e e e et s e e ae e st e e eaaneesaneesas 313

ROIES .ottt e et e e e e ettt e e e et ettt reaaaaaaaias 315
POIMISSIONS ..ottt ettt et e ettt e e aee e et e et e e e e e etas e e be e st e e abaeaananaes 316
PrOGICALESoeeeeeeeeeeeee ettt e e et e ettt eae s e e e e e e et tbaas e e e e e e saststaassesaaaaanies 317
Permissions to the diCtiONAIIESceeuuuuueeeeeeee et e e ttie e e e e e e etreaaeeaaaaaaaans 318
Permissions t0 the tOTAIS............vuueeeeeieieiiieee ettt e e e e eesse e e e e aaeanin 318
Permissions t0 the dOCUMENTS.........c..cceveeeieiee et e e eee e e e e e et eeseeeaaaaesans 319
Permissions to 1aUNCh Of NANAIEIS.............u.eeeeeeeieieeee ettt 319

© 2018 Ultimate

(04 (1T = 4] (o K 319
PeImMiSSIONS CRECK. ... vveieeeeieieiiieee ettt ettt e e e e e e et ttsse s e e e e e e ettateseeesaaanenins 320
Modules of client aPPliCAtIONS.euiiiiiiiiiiiiiiiiiiiiiit ettt eeeeeaee e eeebeeereeeaeeaeereaerernrenes 320
Localization Of @XCePLIONSciiii e e 321
(o4] o ¥ PSPPSRt 322
e To o T 1o e« =1 (2 11 Lo o A0 N 326
ApPPlicAtions AN MOAUIES..............euueciriiieeeeenicieiiiiieeiiiisissisiisseineiisissssssssssnsssssssssssssssnsssssssssns 327
Client application archit@CtUIE........uuui i e e e e e e eaaen 327
RY =8V =T g Lo o 17 =X 327
Modules of client QPPHCALIONS.............ceeeeeeeeeieee et e ettt e e tee e e e e aeaaaas 328
Client APPHICALIONS.........ccceeeeeieiiiiiiiiiiieeeeeeeeee ettt 330
How to create modules and screen forms of main application 2.......cccccoovviiiiiiiiiiiiininnn, 331
1Y e o [T =X TR 332
LiSt fOrmMS Of diCtiONAIIEScevveeeeeieeee ettt et e ettt e et e e e e tee e e aaaeeeaeaaaas 333
How to create expression-subrequests in filkersuuuuuuuuuuuuuuuuuuuieiiiiiiiiiiiiiainananans 339
How to create list fOrm filbers..........ouuuueeeeeeiie ettt e e e ee e e e e e 340
Edit forms Of diCtioNAIrY FECOIAS..........uuuueeiiiiiiiiiiiiiiiiiiiiiiiiiaaiies 345
LISt fOrMS Of dOCUMEGNES.cceeveeeeeeeee ettt ettt e ettt e e ate e e e aaeeeaeaaaas 348
Edit fOrMS Of dOCUME@NES.eveeiiiiiiiiiiiiiiiiiiii s 352

e T2 (=3 oo g U 356
CUSEOM filE@F ..ottt 359
(001 11 1 1o T Lo KOOSO PTPPPPPN 359
CUSTOM SCIEEN fOIMS ..ottt ettt 361
Query forms for the parameters of interactive commands.................ccceeveeeuveeeeeivuanannn, 362
VYoYo)[lolo T leYe Waa o T oI o o FO 366

Y/ To] o 11 E=Rr o] o] 1T or= 1 o o TSPt 367
System tools for setting of the appearance of screenforms_2..........cooovviieieiiiiiiiiiiiicienennn. 367
UIEima CONtrol @1EMENTS...cci ittt e e e e e ee b r e s e e e e eeaeabeans 370
COMMONFOIM .ottt et e e e et tee e e tes e et e et e s ebasaetseaaaneeanaes 370
BASELISTFOIM ... oottt et e e e et e e et e s e e eaaan e e e eabaeeeeaaas 371

10 RY=] o |14 ale) ¢ ¢ F SR 372
BASEPAIAMEOIM. ..ottt ettt e e e 374
BaASEDICLIONAIYLISTFOIMN. ..o ettt ettt ettt e e tee e e tee e st e e e e eananees 374
BaSeFIQtDICtIONAIYLISTFOI.........ceeeeeeeeeeeee et ettt e ettt e e e e tee e e eateeeaeaaaas 375
BaseTreeDictioNAryLISTFOIM..........coouuue et 376
BaseDictioNAryEQItFOIM..............ceeeeieee ettt ettt e tee e ettt e e e e tee e e aateeeaeaaaas 377
BASEDOCUMENTLISTFOIM ..ottt ettt e e eee e e tae e et e e e e eenanees 377
BaSeFIatDOCUMENTLISTFOIN..........uueeeeeeeieeiiiiieeeeeeeeeeiiieee e e e e e e e etiess e e e e e e eeaiatassseeaaaannins 378
BaSEDOCUMENEEQIEFOIM......ccceeveeeeee ettt e e e et eee e e e e e e et eaaeeeaaaeesans 379

D) (o (o Y g Lo T gV u =] o T=1 U 380
DOCUMENTHEIDEN ...ttt e e e ettt ees e e e e e e eeataaaeeaaaaeasans 381
DictioNAryLOOKUPEIL..........cccoeveeeeeeeeeee ettt ettt e et e e e e aee e e e aaeeeaeaaaas 382
DictioNnAryLOOKUDTIEEE Ituueueeeeiiiiiiiiiiiiiiiiiaiitiiiiiietatabtasbsssssbsasssesasaaeas 383
DictionaryMUltISEIECLEGIL............cccoeueeeeeeeee ettt ettt e e tee e e aeeeaeaaaas 384
DOCUMENTEIIDSEE Lcceeeeeeeeeieeee ettt e e e e et tee e e e e e e ettt eaaeeaaaaeesans 385

D) (o (oXa Lo T g YL Cl 4 o | ade L T=1 386
DictionAryGridVIEWPANE.............uuuuuuiiiiiiiiiiiiiiiieiiaiiiiiiiaiisaatatiasiaaasaaasaassbsbsbsssassassassaees 388
DictionaryTre@VIEBWPANEL............cccoeueeeeeeeee ettt ettt e e e ttee e e e aeeeaeaaaas 390

© 2018 Ultimate

ULTRAATE

SOLID

DiCtIONAIYCRECKLIST. ...ttt 392
DocuUmentGridVIEWPANEL..............eeeieiiieeiiiiieee et e et eetese e e e e e e e eeisss s e e e eananins 392
LINKTABIEGIIAPANEL.........coeeeeeeeeeeeeeeeee et ettt et e ettt e e ee e vaeeeevesaas 394
BaseTabIePArtGridPANEeccceeeiiieeiiiiiieeeeeeieiiiiee e e e eetese e e e e e e eeeiisse s e e aaanenins 395
UIIMAPANEICONTION.coeeeeeeeeeeeeeeeeeee ettt ettt e e e eee e e e 397
UIIMADAEEEGIL.......coeeeeeeeeiiieee ettt ettt e et se e e e e e e e e ttse e e e e e aeeasssans 397

4 Lo] a1 [=] Lo [398
UIIMATEXEED I ... eeeeeeeeeeiiieeee ettt e ettt ee e e e e e e ettt s e e e e e e e e eatbbn s s e s e e aeeesstaanans 398
PostgreSQL-based version fEatures.........cuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisesesssssesssssssssssssssssssssssens 398
PostgreSQL version lIMitations.............cceeeeeuseeiiiiiinnneensiiieissinnssnnnssississssssssnssssssssssssssssssssssssssns 398
PostgreSQL development fEALUIES.........uuuuuuuneeeereerereeeiseiesreererrennsssessssserssmssssssssssessssnnsssssssnnes 399

© 2018 Ultimate

ULTRAATE

Introduction SOLIn

Introduction

On correct terminology practically applied
For the mutual mapping concept a special terminology is used.

However, since diaSpar is intended for a wide range of business users, this terminology comprises well

known notions like "documents", "results", "reports", etc.
Though, the familiarity with terms used in diaSpar should NOT mislead.
The meaning of theses terms is much more wider in the context of diaSpar.

A detailed description of the terminology used to describe mutual mapping and diaSpar takes a several
pages of plain definitions, that is why only some key notions regarding the managing meta-system are
presented below.

6

r

4

i

n

e

I

d

L . Terminology of . . g
Meaning in mutual mapping . Business meaning

mutual mapping \

d

f

g

i

E

9

H

3

r

g

d

g

y

The process within the enterprise I

cybernetic model which s . The value chain notion is used in its|e
. . mchain . .

determined by all possible changes traditional meaning I

pertaining to this process t

t

Y

H

6

A basic feature of an individual . . - g

. A value chain stage is also used in its common
change determining the current|mstep . d
meaning
status of the delta of the process g

© 2018 Ultimate 8

Introduction

ULTRAATE

SOLID

M T < & v C W &+ 5 M S C

It is a structured minimal and
sufficient package of changes in
measurable indicators for the
cybernetic model for a specifig
process.

mpack

It is a small container unit of logically
connected objects (that can be empty as well)
which are moving along the value chain
(mchain), through its stages (msteps), and
transforming their nature up to becoming
objects of another nature.

These objects are a raw material at the input
of the value chain and finished products at its
output (from the local value chain point of
view).

An M-pack can contain any amount of
information about any objects which are
simulated in the diaSpar.Matrix cybernetic
model.

Likewise, the rules of business logic applied
to mpacks at every stage (mstep) of the value
chain (mchain) can use values of any
parameters and features of cybernetic model
objects.

A shipping list is a primitive example of the
mpack (hence the name of diaSpar has been
chosen).

~ 35 M 5 c 0O 0O O

The hyper-surface is a projection of
the cybernetic model in a space
with aless number of dimensions

mface

The Mface is a sample container containing
the current values of a random number of
numeric parameters of an individual section
of the cybernetic model along with the history
of their evolution.

The number of mfaces which the cybernetic
model can run simultaneously is theoretically
unlimited.

The population of mfaces of the cybernetic
model contains all up-to-date data about the
state of all enterprise parameters measured
in real time.

— Q) ~+ O e+

© 2018 Ultimate

Introduction

ULTRAATE

SOLID

Itis a structured atomic package of
changes for one or two mfaces
representing the delta of the state
which is set by the mface

equant

It is a quantum of the state of the cybernetic
model.

They are generated by traflexes (they are kind
of conditioned reflexes of mutual mapping,
please see below)

An accounting transaction
example of equant.

is a primitive

S 0 — & 0O QO »w S5 QO = o

It's random relational algebra
functions projecting a subset of the
model into the calculated hyper-
surface.

xface

Aggregated data sets generated by low-level
tools of mmizer by inquiry from developers
applying data transformation techniques for a
random number of basic mfaces.

They are used in certain situations.

— Q) &t 0O & X M — 7T [0O O

Functions to completely transform
the state of the model

mflex

Mutual mapping prescribes eight types of
model responses which are similar to reflexes
of a biological organism.

It's interesting that all mutual mapping
reflexes are, on the one hand, conditioned,
i.e. they can be (and are expected to be)
changed.

At the same time, they are unconditioned.
Because, from the point of view of the current
model layout, these reflexes are 'inherent'.

In other words, they were embedded by the
programmer 'Creator' at the time this very
model layout emerged (as a Corporate
Intelligence personality).

=& 7 = =S 0O \n

on-DEmand mFLEX

deflex

It's the model response to actions performed
by a human user using visual interfaces of
diaSpar client applications.

O 3 QO 5 3 0 O

© 2018 Ultimate

10

Introduction

ULTRAATE

SOLID

t

SHEduled self-executing mFLEX sheflex The model's response to regular events 2
K

V

6

o

The model's response to inquiries from|s

from the Outside calling mFLEX oflex e?<t'ernal' cybernetic sys'tems transmitted viaje
digital interfaces (which are mainly webjr

services and binary protocols) \

i

d

6

6

\

6

)

A particular model's response to changes in||t

e the mpack state which depends on the mchain||h
SPEcified mFLEX speflex and mstep within which the changing mpack is|4
located. n

g

I

6

r

g

d

n

n

e

M

6

\

BAsic mFLEX baflex An unconditioned model's response to|e
random changes y

t

H

3

M

g

I

6

r

The model's response to removing an mpack t

TRAnsaction mFLEX traflex to another mstep (mchain) which describes r
the process of structuring and data projecting i

© 2018 Ultimate 11

ULTRAATE

Introduction SOLIn

S
3

d

t

i

for the removing mpack container into a set of 9
mfaces. d
S

g

r

i

H

t

g

I

i

The model's responses are carried out byE
meta-system duplex effectors through:

Remotely executable mFLEX rflex different client applications, as well as

unmanned diaSpar functions which operate ;
manufacturing equipment. :
i

¢

t

Mfaces and mpacks in their totality are similar to computer's RAM memory and its hard drive.

The data loaded into RAM to some extent duplicates the data stored on the hard drive, but RAM memory
is intended to provide the CPU with data in real time. The data stored on the hard drive is much more
exhaustive, while the access time is not that critical for it.

If different access time for data stored in RAM and on a hard drive results from a structural differences of
the two devices, in case of diaSpar the difference between mfaces and mpacks is determined by
different data packing methods (the starlike data storage model).

Mface analytic sections can be generated in any amount based on any data set from the cybernetic
model, but in practice mfaces are usually based on actively used facilities of the enterprise or groups of
counterparties.

An Mface has its own structure, measures and indicators of any complexity in terms of their number.

For example, an mface with data on warehouse capacity usually has two indicators — the physical
capacity (in items, kilograms, liters...) and capacity in terms of money.

Thus, any equant is measured within such mface in terms of both its quantity and cost, otherwise it will
just NOT be replicated by the mmizer.

Apart of spreading correct terminology, it is planned to be translated with new versions of diaSpar.

Now the mutual mapping terminology is recommended to be used by both diaSpar integrators in their
descriptions of target models and process engineers of companies dealing with changes in value chains.

© 2018 Ultimate 12

ULTRAATE

Introduction SOLID

Ultimate AEGIS® Architecture

Ultimate AEGIS® is a three—tier architecture software suite (=+ wikipedia) which includes:
e database server (Oracle 11gR2 Enterprise Edition or Oracle 12c Enterprise Edition);

e application server;

e print server;

e client applications.

The general model of interaction is presented in the diagram below:

Oracle Primary Oracle Standby
Database server Database server

server server server

I
| |
| |
application : application | export
|
| |
| |

A A

communication

S

office

v
client applications print server

S

As a rule, and that is highly recommended to, the database server is located in the data center. To
increase hardware fault tolerance and mitigate the risk of data loss, as well as to share the load, it is
recommended to install a standby server/server cluster.

© 2018 Ultimate 13

http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D1%91%D1%85%D1%83%D1%80%D0%BE%D0%B2%D0%BD%D0%B5%D0%B2%D0%B0%D1%8F_%D0%B0%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%B0

ULTRAATE

Introduction SOLIn

Based on similar considerations of fault tolerance and performance, the applications server which
carries out processing of business logic and directly exchanges data flows with database server, can also
be scaled into a cluster. Due to extremely high intensity of data exchange between the application
server and the database server, they should be located in close proximity to each other, at least within
the same local network.

As opposed to the application server and the database server, the print server is located at the same
place with the printing devices and staff, thus reducing the load on the communications due to
transferring smaller volumes of data.

With help of screen logic of client applications, the user can view, enter and edit data.

Composition logic of Ultimate AEGIS® - based solutions

Operated by a customer intelligent enterprise management system on Ultimate Solid platform is
logically divided into two parts:

The Platform Ultimate AEGIS® is an unambiguous part (hereinafter the terms “platform” and “kernel”
are interchangeable), which can only be changed by the vendor (the Ultimate developers). In particular,
it ensures operation of the second part called “business logic space” which is ambiguous and can be
changed by either partners orindependent developers.

The business logic space contains scenarios of business rules processing, business rules themselves,
screen forms and so on and so forth. The specific contents of the business logic space corresponding to a
particular client or (which is a bit more general) to a particular business sphere is called “ business logic
space configuration” or just “configuration”.

The Installation is a fully deployed software which is the platform and an adapted configuration for a
specificclient. A ready-to-use set of the platform and configuration is called a solution which is usually
named after the corresponding configuration. For example, for e-Trade configuration the solution will

be also called Ultimate e-Trade. Henceforth ,we shall use the terms “system”, “product” and “solution”
as synonyms.

The platform ensures the functioning of the entire software system as a whole and provides the
following tools and mechanisms:

e Users management, their authorization and entitlement inspection;

e communication between applications;

e access to the DBMS (database management system);

e configuration changes (version control);

e conversion of “raw data” from DB to system objects;

e integration services —SOAP, JSON, REST, XML, etc.;

development environment and business logic changes.

Configuration is a set of metadata describing the structure of business objects and a specific data:
e documents;

e dictionaries;

e links and references of documents and references;

e dictionaries;

handlers, describing the logic of interaction between business objects;

server modules;

client modules;

user rights.

© 2018 Ultimate 14

ULTRAATE

Introduction SOLIn

The general model is presented on the chart:

. . /‘_—_——_‘\
application server S
documents documents rint forms
types subtypes P Kernel
scheme
handlers totals
T DATABASE—
KERNEL
client reports Ultima
applications scheme
fizules server modules metadata dictionaries

client module

metadata

KERNEL

client
applications
modules

print server

KERNEL

The configuration is stored entirely in the database. The supported databases include Oracle 12c

Enterprise Edition and PostgreSQL 9.6. The database contain two schemes:

e Kernel— its structure is static. It is the very scheme the application server loads configuration from
when launched;

e Ultima — modifiable by any developer, in which tables are created and data of business logic space is
stored.

PostgreSQL database uses a few more schemes, also owned by the kernel. PostgreSQL-based version

has a few minor limitations compared to the Oracle-based one. Except for these limitations, the two

versions are functionally equivalent. For more information about the limitations and the development

process of the PostgreSQL-based version, see the dedicated chapters.

The kernel schema structure is unavailable to the changes by application developer, instead it provides
an interface and tools to implement business logic. The business logic performed on the application
server is implemented in the form of classes in C# inherited from the corresponding classes of a
platform (further such classes will be called scripts). The screen logic is carried out on the client
application and is implemented in the form of modules on any .NET compatible language.

The system provides to the applied developer ready to be used:

e authorization and authentication mechanisms;

e mechanisms of conversion of objects, their unloading and saving in to the database;
e editor of business objects and business logic;

e communication mechanisms between parts of the application;

e mechanisms for rapid prototyping of user interfaces;

e system updates without restarting, and more.

Task of the application-oriented developer is creation by means of these tools new and/or modification
of existing configuration which represents set of reference manuals, documents, outcomes, processors,
screen forms, etc., and also their descriptions.

© 2018 Ultimate 15

ULTRAATE

Introduction SOLIn

Developer
First steps

Means of the subject area description

The system suggests formulating the description of the subject area by listing the dictionaries, link
tables, documents, totals and scripts that handle various events in the system.

Dictionaries and link tables are meant for storing the static and rarely changing data. It will be ok to
present them as simple tables.

This is one of the simplest objects in the system. For example, the list of products sold or manufactured
by the company can be a good example if presented as a dictionary.

As soon as the system recognizes the description of a new dictionary (its name, a set of fields, etc.), the
developer can immediately use a form to create the list of the dictionary records and a form to edit the
records. This allows quick move to the implementation of other logic, without losing time to develop
the interface. The link tables are meant to the many-to-many link. The description of the link table
properties allows the system automatically generate the ready data management interface and offer it
to the user or the developer.

Documents and totals are the objects that are more complex.

Documents contain the information about a certain event in the subject area (for example, the sale of
products).

Documents are the composite objects, unlike dictionaries. Each document contains a standard header
(the set of fields that is present in any document of the system), an individual header — the set of fields
that exists only in this document, and a set of table parts (it can be empty or not — the number of the
table parts for one document is not restricted, and this simplifies the formulation of the complex
business logic to a great extent).

A table part allows keeping a list of records within a single document (rows listing products enjoy the
highest demand here, but it isn’t the only example). The documents are closely related to the concept
of atotal.

Total is the object of the system, which allows describing the measured parameter of the subject area
and keeps the record of its changes. The total can be also presented in the form of a multivariate cube:
the same terminology —dimensions and variables is used in the system. Thus, the document retains the
information about the event and converts its data into a set of the totals’ changes. An example of a total
can be the in-stock products at the storehouses. This system object stores the information on the
guantity of each product remaining at each storehouse. Accordingly, the sale document reduces the
entire total of the products remaining at the storehouses (for the products in the document).

The following terminology will be used further on:

e dictionary (a synonym for a dictionary type) — the dictionary type defines a set of fields and other
properties;

e dictionary record — a specific record (or a specific object of the system) in a dictionary;

e link table (a synonym for an link table type) — similar to a dictionary, it defines what fields are present
inalink table;

e document type — the description of the set of fields in a document header and other properties;

e document — one particular document containing information about an event.

© 2018 Ultimate 16

ULTRAATE

Developer SOLIn

Dictionaries

Dictionaries store the information about the objects of the described model.

The system generates (for each dictionary) a class to represent a dictionary record. In addition, the
system generates the SQL script to create the necessary tables (and other objects for the dictionary
storage) in the database. Accordingly, each dictionary contains the records which fields can take the
values of the following types:

e numbers —even and fractional (different types use different visual display);

e strings —short (2048 characters) and long (the size of which is limited only by server disk space);

e dates;

e logical (Boolean) type;

e binary data (e. g. photos);

e references to other dictionaries or documents.

Dictionaries can be of flat and tree types. They differ in their form of displaying the content —in a table
or tree form, respectively.

Link tables are used for keeping the links between the dictionaries in the system. Link tables do not
have their own form of display, but their data is available for viewing and editing in the screen forms of
those dictionaries, which they link. For example, they help to set the storehouses/products relations,
when a large range of products is stored at many storehouses:

Products Storehouses

Product ID ! Storehouse ID
N —l—- Storehouse ID N

ame ame

Product ID

Full name Address
Description Phone
S _,_,—-—-—-___-/-\\--/‘

Apart from keeping the links between the dictionaries, the link tables can also be a storage of some
additional values. An example of this can be the situation when, in addition to the
storehouses/products relations, it is necessary to store the value of the minimum required reserve stock
amount at the storehouse:

Products Storehouses

Product ID Storehouse ID
N 1 Storehouse ID I N

ame ame

Product ID
Full name Address
Description Min. guantity Phone
L Jessmeton Lnene o~

Totals

Totals contain information about the current state of the company’s measured performance indices, as
well as the history of their changes. Each change of a total is called a transaction. If drawing an analogy to
the accounting practices, it can be said that totals are the distant descendant of the book accounts
concept, while a transaction, respectively — of the accounting records.

Totals consist of dimensions and variables. Each dimension of a total is a reference to a dictionary. Totals
can have many dimensions, thus being multidimensional cubes.

Transactions show what changes occur with respect to each variable, and on what dimensions.

The totals can be balance and non-balance.

© 2018 Ultimate 17

ULTRAATE

Developer SOLIn

The double-entry rule applies when introducing changes to a balance total: then every transaction is the
transaction in pairs (with the opposite values-debit and credit) and their sum is always zero.

Double-entry is not applicable when introducing changes to the outcome of a non-balance total.
Accordingly, one can not make a transaction between the balance and non-balance totals.

The system can automatically generate a standard form of report, for each total; this form has
customizable grouping and filter mechanisms.

| ' I It might seem (at first glance) that the totals do not differ from the link tables mentioned
= above.

However, it is not so.

The difference is that the values stored in the link tables, are not the measured parameters;
they are set manually. If you want to implement the totals by using the link tables, you will
have to develop the mechanisms for their completion (as well as the reporting forms and
other tools) right from scratch.

Documents

Documents contain information on current events, which are the basis for generation of transactions —
changes in totals. Similarly to the dictionaries, the system generates a class for each type of the
document to store a single document.

Type of documents specifies:

e set of fields in the document header;
e set of table parts;

e set of document subtypes;

A document consists of:

e acommon header —a set of fields typical for all document types;

e a header—aset of fields typical only for the given document type;

e aset of table parts —a document's massive of data of the same types that characterize dictionaries.

The table parts themselves are separate objects and shall be described separately.

The document type determines the set of table parts types it includes. A document may include two
table parts of the same type. Similarly to the dictionaries, the system generates a class for each type of
the table part to present a single record. Unlike the dictionary, a record of a table part has a predefined
set of fields, which allows the record to be linked to the document.

Need for any document type is determined by the business logic. This can be, e. g., receipt documents,
cash documents, inventories, etc.

An event, information on which is stored in the document, can be stretched in time, for example, sale
occurs through the stages of order, picking up at a store, payment and release. If the information on
intermediate stages is not so important, the stages can be presented as document subtypes for the
benefit of users or developers at the sacrifice of accessibility of such information. A state is similar to a
document subtype. A developer designates possible subtypes for each type of documents. In addition
to the description of domain knowledge and representation of the current state, a system administrator
distributes rights to separate system subtypes, e. g., he can grant rights to execute all operations within
asingle subtype and "read only" rights within the rest of subtypes.

As it was said above, documents store information about events, while totals allow distributing such
information to different slices. Transformation of data in a document into transactions of totals is carried

© 2018 Ultimate 18

ULTRAATE

Developer SOLIn

out by means of special programs — transaction scripts, or posting handlers, coded by application
programmers.

Such scripts are launched every time the document is saved, and the system will see to it that the set of
transactions is saved in the database in the best way. Besides the transaction scripts, several other
scripts are triggered during saving of transactions; these scripts allow checking arbitrary business rules.
The triggering order described in details in the following chapters.

|!I Consider an example of interrelation of documents, totals and posting handler's operation.

First, let's buy article "1" from supplier "1" and place it in store "1".

The receipt takes form by means of a document of the purchase type. In the document's header, a
supplier and a store for the incoming articles are specified; the articles are to be listed in the table part:

A Purchase #1
Supplier 1
Storehouse 1
Product | Quantity | Price Amount
1 15 10 150

This process enables three dictionaries:

Storehouses Droducts
[ID Address Area ‘ | ID Name Amount]
{1 82 Pine 5t 214 ‘ | 1 DVD-R 20 J
Agents
‘ D Name Address W

‘ 1 Future Simple LTD 78 Old Mill Rd ‘

When saving the document "1", the posting handler is called and generates the transaction "504". On the

basis of this transaction, the kernel makes the following changes in totals:

¢ in the total "stock (transactions)", one row is subjoined, which increases the number of article "1" on
store "1" by quantity and amount of the receipt;

e in the total "agent debt", one row is subjoined, which decreases the debt of supplier "1" by the
amount of the receipt.

before purchase

the remaining stock at the storehouse (summary) the remaining stock at the storehouse (movement)
Product | Storehouse | Quantity | Amount Document | Product | Storehouse | Quantity | Amount
1 1 0 0 50441 1 1 15 150

after purchase

the contractors’ debt the remaining stock at the storehouse (summary)
Document | Agent Amount Product Storehouse | Quantity Amount
5044 1 1 -150 1 1 15 150

For the total "stock (transactions)", in the example above, the fields document, article and store are
dimensions and refer to the corresponding tables; the fields quantity and amount are variables.

© 2018 Ultimate 19

ULTRAATE

Developer SOLIn

Now, let's sell the article.

The sale takes form by means of a document of the sale type. The document's header specifies a client
and a store, where the articles for sale are stored; the articles are to be listed in the table part: Payment
accompanying the sale is processed by a document of the payment to cash type. In the document's
header, a client and a cash accepting the payment is specified; amount of payment shall be specified in
the table part:

A Sale #3 A Cash-desk payment #2
Client 2 Client 2
Storehouse 1 Cash-desk 1
Products | Quantity | Price Amount Amount | Description
1 7 20 140 140

At this stage, the process involves one more dictionary:

Agents Cash-desks
(ID Name Address | ‘ ID Address]
1 Future Simple LTD 78 Old Mill Rd ‘ 1 82 Pine St J
2 Present Perfect LTD 11 Loring Ave

When saving the document "3", the posting handler is called and generates the transactions "505" and

"506". On the basis of these transactions, the kernel makes the following two pairs of changes in totals:

¢ in the total "stock (transactions)", one row is subjoined, which decreases the number of article "1" on
store "1" by quantity of expenditure and amount corresponding with the cost of previous receipt;

e in the total "sales", a row is subjoined, which increases quantity of the article "1" being sold to client
"2" at amount of sale cost;

e in the total "sales", a row is subjoined, which decreases quantity of article "1" being sold to client "2" at
amount of sale (at selling price), thus, we have proceeds arising from the pricing spread;

¢ in the total "agents debt", a row is subjoined, which increases the debt of client "2" by amount of the
sale.

When saving the document "2", the posting handler is called and generates the transaction "507". On the

basis of this transaction, the kernel makes the following changes in totals:

¢ in the total "agents debt", a row is subjoined, which decreases the debt of client "2" by amount of
payment.

e inthe total "cash", arow is subjoined, increasing the money in cash "1" by amount of payment.

© 2018 Ultimate 20

ULTRAATE

Developer SOLIn

before sale
the remaining stock at the storehouse (summary) the remaining stock at the storehouse (movement)
Product | Storehouse | Quantity | Amount Document | Product | Storehouse | Quantity | Amount
1 1 15 150 1 1 1 15 150
J/-S(JS 13 1 1 =7 -70
-
sales
Document | Agent Product | Storehouse Quantity | Amount
5054 3 2 1 1 7 70 _
- 5064 3 5 1 1 7 -140 ——» Revenue =70
the contractors' debt cash
Document | Agent Amount Document | Cash-desk Amount
1 1 -150 5074 2 1 140
-5074 2 2 -140
5064 3 2 140

after sale

the remaining stock at the storehouse (summary)

Product | Storehouse | Quantity | Amount

1 1 8 80

In fact, due to the difference in purchase prices, the cost would be calculated not so definitely, as shown
in the example.

Consider one such case. Let's buy article "1" from a different supplier "3" at price different from the
previous one (document "4"), and then resell it to client "4" (documents "5" and "6"):

Purchase #4 Sale #6 Cash-desk payment #5
Supplier 3 Client 4 Client 4
Storehouse 1 Storehouse 1 Cash-desk 1
Product | Quantity | Price Amount Products | Quantity | Price Amount Amount | Description
1 10 5 50 1 15 20 300 300
Agents
[1D Name Address 1

1 Future Simple LTD 78 Old Mill Rd

2 Present Perfect LTD 11 Loring Ave

3 Past Simple LTD 60 Fountain Ave

4 Past Perfect LTD 20 Linden Blvd

When saving the document "4", the posting handler is called and generates the transaction "508". On the

basis of this transaction, the kernel makes the following changes in totals:

¢ in the total "stock (transactions)", one row is subjoined, which increases the number of article "1" on
store "1" by quantity and amount of the receipt;

e in the total "agent debt", one row is subjoined, which decreases the debt of supplier "3" by the
amount of the receipt.

© 2018 Ultimate 21

ULTRAATE

Developer SOLIn

When saving the document "6", the posting handler is called and generates the transactions "509" and

"510". On the basis of these transactions, the kernel makes the following two pairs of changes in totals:

e in the total "stock (transactions)", one row is subjoined, which decreases the quantity of article "1" at
store "1" by quantity of expenditure; amount of this expenditure, being a cost, is subject to
calculation, therefore the newly-created transaction has a blank field;

e in the total "sales", one row is subjoined, which increases quantityof article "1" being sold to client "4";
the amount field, again, being a cost, remains blank;

¢ in the total "sales", one row is subjoined, which decreases quantity of article "1" being sold to client "4"
at amount of sale (at selling price);

e in the total "agents debt", a row is subjoined, which increases the debt of client "4" by amount of the
sale.

When saving the document "5", the posting handler is called and generates the transaction "511". On the
basis of this transaction, the kernel makes the following changes in totals:

e in the total "agents debt", a row is subjoined, which decreases the debt of client "4" by amount of
payment.

e inthe total "cash", arow is subjoined, increasing the money in cash "1" by amount of payment.

before purchase and sale

the remaining stock at the storehouse (summary) the remaining stock at the storehouse (movement)
Product | Storehouse | Quantity | Amount Document | Product | Storehouse | Quantity | Amount
1 1 8 80 1 1 1 15 150
3 1 1 -7 -70
5084 4 1 1 10 50
5094 6 1 1 -15
sales
Document | Agent Product | Storehouse Quantity | Amount
3 2 1 1 7 70
3 2 1 1 -7 -140
50946 4 1 1 15
-5104 6 4 1 1 -15 -300
the contractors' debt cash
Document | Agent Amount Document | Cash-desk Amount
1 1 -50 2 1 140
2 2 -140 51145 1 300
3 2 140
M e——-5084 4 3 -50
—1 -5114 5 4 -300
———— 51046 4 300 after purchase and sale
the remaining stock at the storehouse (summary)

Product | Storehouse | Quantity | Amount

1 1 3

Variables remaining blank in the process of storing the transactions are analytical. In case of the total
"stock (transactions)", this is the variable amount. When buying, amount is known, therefore during
posting it goes to the total. But when it comes to the outgo, the amount needs to be calculated, and the
field remains blank. Whereas the variable quantity is operational; we always definitely know which
quantity of articles is being recorded as received, written off, transferred, or sold.

To explain how the costis calculated, we need to consider in details the structure for totals storage.

Each total is implemented with the help of four tables, two of which are operational and the others
analytical. Similarly to variables, the information is put into operational tables right after the transaction

© 2018 Ultimate 22

ULTRAATE

Developer SOLIn

has been recorded, while into the analytical tables the information goes after the totals have been
calculated. At the same time, the operational tables may contain analytical variables, such as "stock
(transactions)". It is analytical variables of the operational total that remain blank, if the transaction
doesn'tinclude their calculated values.

The tables can be distinguished by prefixes:

e TB_tablename — operational summary table, which contains only one set of variables' summary values
for each set of dimensions. In the example above, this is the table "stock (summary)", which contains
a current balance and its value for each article stored;

e TR tablename — detailed operational table, which includes all transactions. Having summed their
variables for a certain set of dimensions, we can obtain a summary value that is stored in
TB_tablename. In addition, this table contains information on documents and transactions that led to
changes. In the example above, this is the table "stock (transactions)";

e TD_tablename - detailed analytical table, which includes the same transactions (only already
calculated) as the TR_tablename. The table is filled-in after the totals have been calculated. In the
example above, this is the table "stock (analytical transactions)";

e TT_tablename — detailed analytical table,which contains only one set of variables' summary values
from the table TD_tablename for each set of dimensions. In the example above, this is the table
"stock (summary, analytical)";

For the latter example, tables of the total "stock", after the cost has been calculated, will be as follows:

before purchase and sale

the remaining stock at the storehouse (summary) the remaining stock at the storehouse (movement)
Product | Storehouse | Quantity | Amount Document | Product | Storehouse | Quantity | Amount
1 1 8 80 1 1 1 15 150
3 1 1 -7 -70
4 1 1 10 50
-5094 6 1 1 -15
Document | Agent Product | Storehouse Quantity | Amount

the remaining stock at the storehouse (analytical movements)

TD
Movement | Document | Agent Product Storehouse Quantity | Amount | Incoming document
504 1 1 1 1 15 150 1
505 3 2 1 1 -7 -70 1
508 4 3 1 1 10 50 4
509 6 4 1 1 -8 -80 1
509 6 4 1 1 -7 -35 4
the remaining stock at the storehouse (analytical summary) /_@
Document | Product | Storehouse | Quantity | Amount N after purchase and sale
the remaining stock at the storehouse (summary)
[1 1 3 15 . @
Product | Storehouse | Quantity | Amount

1 1 3

Calculation of cost shall be carried out by the handler — a total driver. The calculation of cost is based on
FIFO principle, according to which the total driver calculates the selling cost and makes two records in
the table "stock (analytical transactions)". An application programmer is able to code his own total
driver and implement the calculation in accordance with another method, e. g., LIFO or average costs,

© 2018 Ultimate 23

ULTRAATE

Developer SOLIn

though such methods would be a mere tribute to the prehistoric times of the management accounts,
when an accurate calculation by FIFO was impossible due to inconceivable efforts.

As a rule, totals are calculated automatically every hour, but the relevance of totals may be even less
exact: if corrections are introduced into a document causing the transactions to change the totals post
factum, the data will be relevant up to the date of this document.

In this connection, a report on totals may be relevant by the date less than the actual date. Information
on the date of the report relevance is displayed in its form view.

How to make simple metadata objects

We will consider creation of simple objects of metadata on examples.

Starting with this chapter the installed system Ultimate AEGIS® will be required. Users with the right
Developer have to be created by the administrator for developers. In formation about the installation
and control in detail it is possible to find in the guide of the administrator.

After starting the main client application (ClientLoader.exe) the user, who has the right Developer, will
see the additional tabs in the main menu. Metadata are described by means of the dictionaries located
in Metadata group in the “Developer” tab:

{ h1 ‘ ULTIMA Client: mick@localhost:8192 | Tools = =2
Developer | Administrator (=]

Documents 17 Table parts

[E pictionaries [Linktzbles

il Totals & More -

Metadata

How to make dictionary

In the list forms of dictionaries (menu item [[§ Dictionaries), create a new record:

[El Dictionary = B
o [F # Q| & - | i 1 << Filters)
&honary D System name Localized name Kernel dictionary - |
1133 Goods Goods =

© 2018 Ultimate 24

Developer

ULTRAATE

SOLID

In the Main tab, set main parameters. Name of the dictionary defines the name of its objects in the
database. Format of dictionary record Display format is responsible for how dictionary records will be
displayed in a short type, for example, in management elements :

[# Edit «Agents» = =R
«E Dictionary: 1592 | 9 SQL script € Class code | & Event script E‘ﬁ' oK Save Cancel
Main | Properties | Link tables | Lists | Commands | Print forms
Mame Agents [Motifications enabled Icon Vb b
Class name Agents [Transparent translation Large icon &
-
Caption Agents en [7] cached [
Guid 486C50d5-2066-4a5a-h706-7fdsdf05f 1aa [15 smal =
Parent property T X Hot key Q,
Database edit user help
Table name AGENTS Tags
Sequence name AGENTS_SEQ
Mapping object VAGENTS
Lookup behavior Dev comments
Display format {0}, Mame}
Search property - | X

Caption description will be displayed in the screen forms as the dictionary name. This multilingual
property (has its value for each of the languages supported by the system):

Property translations = B
Language ID Text
T | Russian :Agents
English {translation is read-only) | Agents
OK

On Properties tab, set the properties of dictionary records. Two properties —identifier of the dictionary
record ID and its Name — are created automatically, and the identifier cannot be removed or changed:

Main | Properties | Link tables | Lists | Commands | Print forms
Q,
Name Caption DB Name |Motnull |Type =
D Identity jin] v Long not nul
Mame Mame MAME | String not null

edit user help

© 2018 Ultimate

25

ULTRAATE

Developer SOLIn

For each created property it is necessary to specify Name that determines names of its object in the
database (value field DB Name will be generated automatically), description Caption and data Type:

Main | Properties | Link tables | Lists | Commands | Print forms

-] Q Mame Phone Tags
Name |Caption DB Name |Notnull | Type Caption Phane number en
D Identity D ¥ Longnotnu DB name PHONE
MName Mame MNAME | String not null -
b Type String — VARCHAR2(2048) | = | ¥ Notnull : Dev. comments
iPhone Phone number PHONE ¥ String not null -
Emal E-mail EMAIL ¥| String not nul Lookup (L Filter
Adress Delivery adress ADRESS ¥ String not null Default value

Max size . Multilanguage edit user hel
Now it is possible to save the dictionary.
When saving the new dictionary its class will be generated in the & Compie +
system Ultimate AEGIS®. After compilation and reset of metadata the TIZII £ Compile metadats
e . ools

generated class can be used when writing, for example, scripts or : e e
handlers. Also the command of opening of a dictionary list-oriented B Regenerate metadata classes %
form will be available to add in the main menu. Regenerate webservice classes

L7 Regenerate and compile scripts

Recompile all scripts

The final step will consist in creation of objects dictionary in DBMS in Ultima scheme by means of the
SQL script generated by application Ultimate AEGIS®:

[# Edit «» = B

| - Dictionary: 2409 || 98 SQL script | €} Class code | & Event script L—‘g oK Save Cancel

Main | Properties | Link tables ListsI}COmmands Print forms

v
Agents =] = =
Create SQL | Alter S5QL
CREATE TABLE AGENTS -
[ID NUMBER (13) NOT NULL, =
NAME VARCHARZ (25¢ CHRR) MNOT NU:;,

PHONE VARCHARZ (2
EMAIL VARCHRRZ (Z
ADRESS VARCHARZ (25

S I T A N

i,
HAR) NOT NULL

s
& C

)

5o m

CREATE SEQUENCE AGENTS SEQ

However, at first for the dictionary it is necessary to give the rights for it to the user for successful
completion of this operation.

After all the script needs to be executed in the Ultima scheme in any application for work with the
relational databases supporting SQL, for example, PL SQL Developer and TOAD. Just before the script
execution it is necessary to specify on behalf of what user and on what branch of meta data changes are
made For this purpose it is necessary to execute KERNEL.SET_LOGIN method having specified the user
login to whom the dictionary rights and an application server code were given:

EXEC KERNEL.SET_LOGIN('UserLogin', 1)

© 2018 Ultimate 26

Developer

ULTRAATE

SOLID

Adding a dictionary to the interface

In order the user could open a dictionary list form, an option should be provided to fetch it.

In addition to combination of hot keys, the dictionaries can be opened via main menu:

4 5}

LLTIMA Client: root@localhost:8192

= Permissions

Access Control

- Kernel Items Dictionaries PrintForms
M T Roles = Current custer: Production platform 1 B
g ¢ ;TE n?;u p s I User [=
= - - LY]
) uo Predicates Current duster config —— L
Users Constants Clusters Sessions Performance Constant Printe

¥ Versions tags

Configuration Manitor Fast access Prin

To add the created dictionary to the main menu, use a form for setting of user interface (item Ul settings

of menu e):

[User interface settings = @ R
Open user interface template by user name or template name:
User name |1 - | |root (Administrator) £ X| Template name |Root UI 3 (55) - Open Ul language: EE English
UI template: Root UL 3 Available commands
. Add mmmand% X | Find command
/ Quick Access Toolbar All {(128) Command name Description Hotkey |Identity Icon
~ [M Main Menu Base (1) i i i
Dictionary: Goods Show list form for the dictionary: Goods e5143fca-aea...
5 51 Kernel Ttems Add all commands Kermel (119) ¥ ¥ %)
> [l Dictionaries T User dictionarles (2) Dictionary: Agents Show list form for the dictionary: Agents 436c50d5-206... e
¥ |2 PrintForms Test (12)
» |z Commands Save
w |2 User dictionaries
Test dictionaries Save as...
Assign to user...
Preview
Kernel Items Dictionaries PrintForms Commands User dictionaries w2

The interface template should be edited for the user, who requires provision with a possibility to call a
command (in our case, it is Administrator with login root).

All user dictionaries including newly created one can be found among the objects of the group User

dictionaries.

After adding a dictionary to interface template and its saving, it becomes available in the main menu:

- Kernel Items

Dictionary: Agents

Test dictionaries

Dictionaries

ULTIMA Client: root@localhost:8192

PrintForms Commands User dictionaries

© 2018 Ultimate

27

ULTRAATE

SOLID

Developer
Issuing of permissions

In addition to the option for fetching of dictionary list form, a user must have corresponding permissions
forits opening.

For that purpose, in the roles dictionary find a Role of the user, who should be provided with a
possibility to access the dictionary:

T3 Role o B
B o, al | &
MName 1D - Identity Role name
w (Al 71 alexey.petrov
» [System Bl=, 73 ifinmanager I
-]
¥ [Temp 83 75 mesobolev l’\?
v [Users 2

In the Roles tab, you can make sure that the edited role is assigned to the very user, whom we are going
to grant access to the dictionary (in our case, it is Administrator with login root). Right there you can see,
what other users are, who can be assigned with the role, and who will be also granted that access with,
correspondingly:

T3 Role, 73 = B =
« Role: 73 4 | Mame |finmanager Folder oK Save Cancel
Roles | Documents | Dictionaries | Totals | Modules | Permissions | Commands | Predicates | Printers
Child roles All roles a, a,
Identity Role name MName bin] -
v (A =
» [E System [
= > [E Temp a3
> [E Users 2w
Parent roles 9, o Users
MName D Identity User name User login
v (Al 6 andry andry
» [= Users 2 no 1 Administrator root

In the Dictionaries tab, grant access to the dictionary. In our case, it is full access, while Read access is
sufficient to open the search form and view dictionary records:

Permissions | Commands | Predicates | Printers

Revoke | [

Roles | Documents | Dictionaries | Totals | Modules

-] Derived Allow

Operation MName Derived Allow Revoke

m e

~ Dictionary Name: Agents
Read
Create
Update
Delete

ﬁﬂ.é;}

Now, after saving the modifications made to the role, Administrator has corresponding permissions to
open the dictionary list form.

© 2018 Ultimate 28

Developer

ULTRAATE

Editing of standard dictionary screen forms

Open a dictionary via main menu and enter a new record:

ULTIMA Client: root@ocalhost:8192

-
o Kernel Ttems Dictionaries PrintForms Commands User dictionaries

Dictionary ﬁents

Test dictionaries

v

[E Agents = =R

e F & |Ic|entit'-_»‘ ||I-Jame Q| Execute commands...~ ¥ | & - | i :':E: Mai. rows: -

Identity | Mame

The opened standard editing form can be modified if necessary:

7] Agents, 5 = | I

¢E & | Agentss5] - en & - etﬂl\ OK Save Cancel
by

Phone number |

E-mail |

Delivery adress |

MName |

The interface is set separately for each system language:

[Agents, 5 = B |

SOLID

«E

-~

Customize layout

Agentss 5 Il - en & - £ oK Save Cancel

[allle | Language: Load Save Reset

Phone number Hidden Items | Layout Tree View

E-mail

Close

Delivery adress

Empty Space Ttem

Mame

A Label

II‘ Separator

<E|> Splitter

© 2018 Ultimate

29

ULTRAATE

Developer SOLIn

The editing tools allow dragging the elements in the form, arranging and separating them, adding new
ones, modifying, and deleting them. Among interface elements available for placing in the form, there
are fields for all the dictionary properties, additional controls created by editor script, as well as buttons
for dictionary commands:

[Agents, 5 = B 2
+ 4~ | Agents: 5 en & - <>€ oK Save Cancel
Name
Phone number E-mail

format is KXK-KXH -

Delivery adress

In the same way, afilter of records in the dictionary list form can be set.

The columns displayed in the list form can be set with Select columns tool — button :i: on the toolbar
(hot key [F2)).

How to make link tables

Let us assume that we have a task to implement an option to add several additional addresses for the
records of previously created Agents dictionary. Moreover, firstly, we do not know in advance how many
additional addresses can be required in each particular case: there can be several of them and can be
none. Secondly, a situation is not eliminated that no matter what number of additional addresses we
assumed sufficient, a need may arise for some record in even larger number.

The task can be solved by adding several additional properties for storage of addresses in the Agents
dictionary. If at any point of time they appear to be insufficient for some record, the application
developer will be able to add new properties to the dictionary.

Or additional Addresses dictionary can be made, to store only the list of addresses like: Address 1,
Address 2, Address 3... Link this dictionary using the link table to the Agents dictionary and store the
addresses in the very link table:

Agents AgentAddress Addresses

71D ﬂ:’ AGENT_ID] 71D 1
[/' ADDRESS_ID }
NAME NAME J

PHONE ADDITIONAL_ADDRESS
EMAIL COMMENT
ADDRESS

This option is better than the previous one because creation of new record in the Addresses dictionary
will be sufficient in case of lack of addresses. Moreover, a common user having a permission to edit this
dictionary will be able to do that.

Creating and filling in of the Addresses dictionary. Let us dwell on three additional addresses at first:

[=] Addresses o =

o 1 # Q| & ~| & = Max, rows: | 10000 5| & « Filters

Identity Mame -
1 Additional address 1

! Additional address 2

3 Additional address 3

© 2018 Ultimate 30

ULTRAATE

SOLID

Developer

In the dictionary of link tables (menu item | Link tables), enter a new record:

<4 Link tables = BOER
o Q,| [¥] Hide system - < Filters @
Ié' Identity |Name Caption -
306 ExceptionTranslationTexts Exception translation texts
321 RoleTreeNods Role tree node
In the Main tab, set main parameters for the link table:
< Link tables, 1637 = = x4
«| Link tables: 1637 | % SQLscript %F Class code 0K Save Cancel
Main | Properties
Mame AgentAddress Tags
Class name AgentAddress
Caption Agent's additional addresses en
Icon ¥ by Dev comments
Database
Table name AGEMT_ADDRESS
Mapping object VAGENT_ADDRESS
edit user help

Name of the dictionary defines the name of its objects in the database. Caption description will be
displayed in the screen forms.

On Properties tab, set the properties of link table. Two of them we can do using the links to Agents and
Addresses dictionaries:

Main | Properties

-] Q MName AgentlD
Name Caption DB Name Mot null | Type PK Caption Agent en
AGENT_ID Long (Agents)) DB name AGENT_ID
Add 1D Additional add; ADRESS_ID L Addi W
ress Htion] acress - ong (Address) Type Long — NUMBER(18) - | [Mot

AddAddress Address ADD_ADRESS String(256) —_— —— e

UsrComnt User comment USR_COMNT String(256) Reference Primary key
Default value
Ref dicionary 1592 - ||Agents ra
Ref name Agent
Ref caption Agent en

Save the link table, compile metadata and create the link table objects with the final step in DBMS in
Ultima scheme.

The link table has no own form for editing, like for instance a dictionary. The records are added in it by
the edit form of one or several of the dictionaries linked to it. In our case, adding of additional addresses
for arecord of Agents dictionary from its own edit form is logical and convenient.

For that purpose, the created link table should be spelled out in the dictionary. Open the Agents
dictionary in the Link tables tab and add new link table:

[Edit «<Agents=

+[Dictionary: 1592 | 3 SQL script %P Class code

Main | Properties | Link tables | Lists | Commands | Print forms

-] Q

Syh'\ name

Localized name

© 2018 Ultimate 31

Developer

ULTRAATE

SOLID

Choose the created link table as Link table property value, Linking property value is a property of link

table, which the Agents dictionary refers to:

Main | Properties | Link tables | Lists | Commands | Print forms

(-} Q
MName Caption
AdditionalAddresses Additional addresses

Name Additionaladdresses

Caption Additional addresses en
Link table AgentAddress -
Linking property |AgentID *
Tags

Dev comments

edit user help

After that, the Additional addresses tab will appear in the dictionary edit form (the name coincides with
the Caption property value, entered during adding of the link table into the dictionary), at which the link
table data will be located, being linked to the dictionary record:

[# Agents, 70 = B
OE| Agents: 70] nofiles ~ en & - 0K Save Cancel
Additional addresses
MName John Doe
Phone number | +7 (495) 555-55-55 =] E
E-mail john.doe@gmail.com Additional address Address User comment
Delivery adress | 27 Park Avenue b |1, Additional address 1 =+ 12 1st Averue office
2, Additional address 2 112 Huston Street warehouse
Parent | P £
3, Additional address 3 13 Crosby Street stare

Let us proceed to more complex objects.

How to make a document

In the list form of document type dictionary (menu item [£] Document types), enter a new record:

Document types

= B R

o & Q

h’ Identity

1257 Taetnm meantTune

System name

=
=l

<« Filters

Localized name

Tect dnriment frne

© 2018 Ultimate

32

Developer

ULTRAATE

SOLID

One the "Main" tab set the Name of document type, which also defines the names of its objects in the

database and Caption:

E} Document types, 1909 [changed] o =
+B + Docurnent types: 1909 | 3 SQL script ¥ Class code & Event script L_‘g OK Save Cancel
Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

MName Order Tags
Class name OrderDocument
Caption Order en
Guid 35882b26-ee06-929c-f78a-646c17fd56fd
Hot key V|ctl [C] At [C]shiftm |+ x G,
Icon =+ s
Large icon A Dew comments
A 4
m;
&5
Database
Table name D_ORDER
Map object name | WD_ORDER
edit user help
On "Properties" tab, set the properties of document type:
Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands
@ |Name Q| [¥] Hide system Mame BuyerID Tags

Name Caption Caption Buyer en

BuyerID Buyer DB name BUYER_ID

OrderDate Order date Type Long — NUMBER(18) |~ | [#] Mot nul

DeliveryAddress Delivery address

| Reference
Dev. comments

Default valus
Ref dictionary 1592 - ||Agents £
Ref name Buyer
Ref caption Buyer = edit user help

On "Subtypes" tab, create at least one document subtype:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands
@ [Locaized name Q Localized name | Order en | comments
Dev comments Metadata tags
D Localized name
2 1932 Order

1933 Reserve

1934 Payment expectation
1935 Set at a warehouse
1936 Ready to delivery
1937 Delivered

Record print forms
(-}

Print form

Record commands
@

Document command

© 2018 Ultimate

33

ULTRAATE

Developer SOLIn

On "Table parts" tab, link the table part of the document, which should be preliminary created. For that
purpose, in the list form of table parts (menuitem [7] Table part types), enter a new record:

[Table part types o [BOER
- Q| & ~| & [Max. rows: | 10000 | & < Filters i
Ié' Identity System name Localized name Database table name

In the "Main" tab, set Name for the table part:

-} Table part types, 1980 = B 2
«F Table part types: 1980] nofiles - en A SOL seript LF Class code 0K Save Cancel
Main | Properties

Metadata tags
Name Order
Class name OrderTablePartRow
Caption Order en
Icon ¥ 3 = edit user help
Database Developer comments
Table name TP_ORDER é@
Mapping object |VTP_ORDER a
Soft deletion
In the "Properties" tab, set its properties:
Main | Properties
[-] Q,| [¥] Hide system MName Amount Tags
Name DB name Not null Caption Amount =
GoodID GOOD_ID W DB name AMOUNT
AMOUNT W Dev. comments
Type Long —MUMBER({18) @~ o| Mot null

Cost COsT W
Reference |¥| Visible

Default value edit user help
Save the table part. Now we can return to the document type edit form and link it:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

[-] Q System name |ListOfPurchases
System name Localized name Table part identity Localized name | List of purchases =
b |ListOfPurchases List of purchases Crder, Order Table part type |Crder, Order -
Dev comments Metadata tags

Now you can save the created document type, compile and reload the metadata.

The final stage will consist in creation of the objects for the table part and document type (just in this
very sequence because the first one is used in the second one) in DBMS in Ultima scheme. It can be
executed using SQL scripts generated with Ultimate AEGIS® application (button "SQL script" in the edit
forms for table part and document type).

© 2018 Ultimate 34

Developer

ULTRAATE

SOLID

Now corresponding permissions should be granted to a user to handle the created document type. For

that purpose, find the Role in the roles dictionary

for the user, we want to grant these permissions to,

and in the "Documents" tab, grant access to the subtypes of created document type (access is granted

separately to each subtype):

'?,;ﬂ Role, 3 [changed]

B

Mame | AgmMuHuCTpaTop

Role: 3 (] nofiles + en

Roles | Documents | Dictionaries | Totals | Modules | Permissions

ame -] Derived Allow Revoke | Jf

Doc Subtype ID
+ Doc Type Name: Order
+ Doc Subtype Name: Delivered
1937 Read
1937 Create
1937 Update
1937 Delete
+ Doc Subtype Name: Order
1932 Read

Operation Mame Derived

Commands

QK

Save Cancel

Folder

Predicates | Printers

Allow Revoke

4

¢.¢.$;5

J

Besides, the command for opening of the list form of created document type should be added to the

main menu using a form of user interface settings:

[User interface settings = =R
Open user interface template by user name or template name:
User name |1 - | root (Administrator) #£ X| Template name |RootUI 3 (55) - Open UI language: | B English -
UT template: Root UI3 Available commands
@ Add command X | Find command
. Quick Access Toolbar Al (124) Command name Description
~ [M Main Menu Base (1)
Test document type list form Show Test document type list form
> [E Kernel tems Add all commands Kermel (111) /¢=
B iOrder list fo Show Order list for :
¥ |2 Dictionaries Undo changes User dictionaries (4) P i it o
> |2 PrintForms User documents (4)
> |2 Commands Save » User commands (1)
> |2} User dictionaries
v 2 User documents Save as...
Test documents
Assign to user.
Preview
Kernel Ttems Dictionaries PrintForms Commands User dictionaries User documents @

All types of documents including newly created one can be found among the objects of the group User

documents.

After adding a document type to interface template and its saving, it becomes available in the main

menu:
=Y ULTIMA Client: root@localhost:8192
A
- Kernel Items Dictionaries PrintForms Commands User dictionaries User documents
Order list form
Test documents
1
1
DefaultDocumentlistFarm = = 22
O © & [21.02-21.02, noneselected |~ || & ~ g ' Max. rows: | 1001 5| & < Filters &
Identity |Creation date Type Caption |Subtype Name COrder date Buyer

© 2018 Ultimate

35

ULTRAATE

Developer SOLIn

Modification of the standard screen form for editing of the documents of created type can be executed
in the same way as for dictionaries (Editing of standard screen forms of the dictionary), and document
editor scripts allows extending the functionality of the standard form:

@ Order(Order) #51 = B £
«E Order 51 Date |01.03.2013 18:06:16 |~ | Balance |Main i ~en B - milb QK Save Cancel
List of purchases
Order date 01.03.2013 -
Delivery address o8 &
Kon - [ann #
B - Good Amount Cost

By root (Administrator), 3/1/2013 6:06: 16 PM Comments:

How to make total

In the list forms of totals dictionaries (menu item gflj Totals), enter a new record:

il Totals = B =R

O @ # |ldentt ame Q, << Filters &

Mame Localized name BaseTableMame

L 2421; Test Test TEST

One the Main tab, set the total Name, which defines also the names of its objects in the database, and
Caption:

r@ Totals, 2482 [changed] o =

+E 4+ | Totals: 2482] nofiles ~ en W SO script %P Class code Event script | [BR oK Save Cancel
Main | Dimensions and variables | Report views

MName AgentProducts Icon \;l- e Large icon \/g
Transaction dass name AgentProductsTransaction
Balance dass name AgentProductsBalance S
Detailed transaction dass name AgentProductsDetailedTransaction Tags

Caption Agent products en

Guid 932156b8-dcb 5-412c-38b6-8d5383b930d3f

Options Double entry Dev comments

Total driver ¥ e £ X

Base DB name AGENT_PRODUCTS &

edit user help

© 2018 Ultimate 36

ULTRAATE

SOLID

Developer

In the Properties tab, create dimensions and variables of the total:

Main | Dimensions and variables | Report views
Dimensions
(-] o, Dimension name | StorelD Tags
MName Caption Dictionary Flags | Operational Informational Pivat dimension
¥ | StorelD Store Store Caption Store en
ArtideID Article iden... Artide Column name STORE_ID a Developer comments
AgentID Agent Agent
IncomeDoc... Income do... Document © dictionary (©) document
Dictionary 3637 |~ |---||Store £
Variables
[-] a, MName Quantity Tags
MName Flags +| Operational
b | Quantity Caption Quantity =
Amount Column name QUANTITY a| Developer comments

Save the created total, compile and reload metadata. The final step will consist in creation of objects
total in DBMS in Ultima scheme.

Now corresponding permissions should be granted to a user for a possibility to view the reports on the
created total. For that purpose, find the Role in the roles dictionary for the user, whom we want to grant
these permissions to, and in the Totals tab, grant access to the created total:

Besides, the command for opening of created total should be added to the main menu using a form of

user interface settings:

T3 Role, 3 [changed] o =3 =R
B Role: 3 1] nofiles + en 0K Save Cancel
Name | Administrator Folder
Roles | Documents | Dictionaries | Totals | Modules | Permissions | Commands | Predicates | Printers

-] Derived Allow Revoke
D Total Name Derived Allow Revoke
2421 Test
2432 AgentProducts ol

[y User interface settings o B R
Open user interface template by user name or template name:
User name |1 - |root (Administrator) 2 %| Template name Root LI 3 (55) - Open Ul language: B English T
UI template: Root UI 3 Available commands
Add command X | Find command
@ Agent group a0 Al (175) Command name Description | Hotkey | Identity Icon
Gend ,
@ Genders * ‘Add all commands > Kernel (113) "Test agent” report Show par... c617fbbf-73... re
w |2 User documents User dictionaries (34) = = :
“ Test documents User documents (7) i"Agent products” report Show par... 932156b8-d... s
& sale A > User commands (6)
@ Purchase A Save User totals (2)
@ Order list form A Custom reports (1)
v [user totals - Save 3s... Test (12)
Test totals =
Assign to user...
Preview
Kernel Items Dictionaries PrintForms Commands User dictionaries User documents User totals

All totals including newly created one can be found among the objects of the group User totals.

© 2018 Ultimate

Developer

menu:

ULTRAATE

SOLID

After adding a report on total to interface template and its saving, it becomes available in the main

Kernel Ttems Dictionaries

“Agent products’. report

Test totals

PrintForms Commands

User dictionaries

ULTIMA Client: root@ocalhost:8192

User documents User totals

L;ﬁ “Agent products” report parameters o =
Build repart
Report view Calculate data for period:
move down from |01,12,.2012 - ||00:00 today, this week, last 7days, lastmonth, this month,
W W
Product to |23.02.2013 - |[23:50 last 30 days
| Agent
» Transaction date + Filter:
» Document
Product s v (X
Product
> Agent Agent v o v X
Groups | Product
> || Agent
Variables g=n

Scripts, handling of system events

System business logic is described in the form of programs or classes in C#, which start in case of
particular events —saving of a document, dictionary record, etc. and executed at application server.

The class in C# itself, its resources for localization, a part generated by the system, etc. is called script.
The system has built in script editor with IntelliSense technology support (see details on its use on
MSDN site =+ eng/rus).

Additional parameters of script — system name, localized name for a user (which can be translated into
other languages), binding to business object and other properties —are called its main part.

Therefore, entire business logicis described with pairs —script and its main part.

The application developer can implement the following types of scripts:
e userreports;
e dictionary record commands;

dictionary list commands;
document commands;
documents list commands;
handlers of dictionary record events;
handlers of document events;
transaction scripts;
transaction validators;
interfaces;

print forms;

services;
tasks;

© 2018 Ultimate

38

http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
http://msdn.microsoft.com/ru-ru/library/hcw1s69b.aspx

ULTRAATE

Developer SOLIn

e providers of report columns;

e user commands;

e drivers of the totals;

e handlers of total events;

e general handler of dictionary record events;
general handler of document events;

web services and their DTO (Data Transfer Object);
mobile services;

mobile interfaces.

All scripts can be provisionally divided into two groups — executable in protected and unprotected
modes. The scripts executable in the secure mode include:

e services;

e mobile services;

e web services;

providers of report columns.

The key difference between these two groups is a method of permissions check:

e ininsecure mode, the scripts are executed with disabled checks of user permissions. That is, if a user
has no permissions to delete the document, he will be anyway able to delete it, having run some
script, executable in insecure mode, which will delete the document. The user must surely have the
permissions to execute (run) such a script;

e in the secure mode scripts are always executed with the rights of the user running them.

While calling a script, executable in the secure mode (e.g. service) from the script, executable in
insecure mode, the permissions check will not be carried out either.

@ There are checks executed even in the unprotected mode (for example, when reposting

documents, which are within an accounting period, the current user is verified if he is allowed

to execute this operation). The only way to execute such operation is to give the user the
corresponding permission.

The scripts, which the user can run from the client application by direct selection, are called interactive.
These scripts can be of the following types:

e dictionary record commands;

e dictionary list commands;

e document commands;

e documents list commands;

e user commands;

e print forms.

The scripts of interactive group have a mechanism to display forms of parameters and client actions:

e parameters formis a form displayed in the client application for request of any data from the user. It
can be described both in a declarative manner, just recollecting the types and names of parameters —
the system will generate itself and show the form to the user, and own form can be created, to be
shown before running the script;

e the mechanism of client actions allows transmitting the control commands from the application server
into client application for performance of particular actions (e.g. the script has generated some file,
which should be offered to user to save locally).

The types of scripts set the method and objectives of their use. Let us dwell on them in details.

© 2018 Ultimate 39

ULTRAATE

Developer SOLIn

Commands

ZF Commands for the dictionary element:
Is called from the context menu of the screen form of the dictionary records list or dictionary record
edit form.
+IThe following is transferred to an entrance of the script:
e identifier of the chosen dictionary record;
e additional command parameters received from the parameters form;
e acollection of actions that should be performed on completion of the script work;
The applied developer has to explicitly specify for which dictionaries the command is available.

£ZF Commands for the list of dictionary records:
Is called from the screen form of the dictionary records list.
+IThe following is transferred to an entrance of the script:
e identifiers of the chosen dictionary records;
e additional command parameters received from the parameters form;
e acollection of actions that should be performed on completion of the script work;
The applied developer has to explicitly specify for which dictionaries the command is available.

ZF Commands for the document:
Is called from the context menu of the document list screen form or document edit form.
+IThe following is transferred to an entrance of the script:
e identifier of the chosen document;
e additional command parameters received from the parameters form;
e acollection of actions that should be performed on completion of the script work;
The applied developer has to explicitly specify for which subtypes of the documents the command is
available. Its call by the user will be possible only if he has the corresponding rights on it, and the
command is available to the edited document subtype.

ZF Commands for the list of documents:
Is called from the document list screen forms.
+IThe following is transferred to an entrance of the script:
e identifiers of the chosen documents received from the parameters form;
e additional command parameters;
e acollection of actions that should be performed on completion of the script work;
The applied developer has to explicitly specify for which types of the documents the command is
available. Its call by the user will be possible only if he has the corresponding rights on it, and the
command is available for types of the chosen documents in the list.

LEF User commands:
Is called from the command list of the main menu.
+IThe following is transferred to an entrance of the script:
e additional command parameters received from the parameters form;
e a collection of actions that should be performed on completion of the script work;
Usually scripts of this type perform general tasks, such as:
e torestore a deleted document;
e to generate a new password for the user, etc.

© 2018 Ultimate 40

Developer

Print forms

ULTRAATE

SOLID

The print forms are used for printout of information or saving it into the file.

+1The following is transferred at script input:
e Type of the dictionary (optional);

e ID (or array of IDs) of printed record (document or dictionary);

e additional parameters of the command;

+I1The script prepares data for filling in a template.

The main part of a printing form consists of one template at least. The template is processed by means
of “engine” —alibrary that receives input data from the script, generates interface of the printing form
on the template. Currently XtraReports is the engine.

The system allows
e exportinto PDF;

export in the following formats:

e exportinto Word;

export into Excel;
exportinto HTML.

Templates of print form for XtraReports are created by means of graphic interface integrated into the

system. An example of XtraReports template is given below:

{ Invoice Ne [DocumentNo]}

[
{Date [DocumentDate:dd.MM.yy]}
Receiver
Shipper
Agent
Reason

s

Ne | Article| UM |Quantity| Price | Amount| VAT

L 1T [15

{ page [PageNumber] from [PageCount]}

{ User [CurrentUserlID]}

{ Attachment to Invoice on[PageCount] sheets }

Total released amount

[Report Header

Page Header

AN

Detail

R

Page Footer

R

E

Report Footer

N

Article issued by
Articles got by

© 2018 Ultimate

41

ULTRAATE

Developer SOLIn

Scripts of dictionaries

For each dictionary, one handler can be created, executable in a number of events, which may occur to
dictionary records.

(=7

1]

1]

The handler in case of creation of dictionary record BeforeCreate:

Called in case of creation of a dictionary record.

-1 A createddictionary record and parameters of its creation are delivered at input.

The handler of this event is used generally for automatic fill-in of the fields of created dictionary
record.

The handler of initiation of dictionary record AfterLoad:

Called after opening a dictionary record, but is not called in case of creation of new record.

+IThe opened dictionary record and flag, defining if the internal objects of the dictionary record will
be loaded, are delivered at input.

Using the handler of this event, e.g. additional parameters can be loaded into the dictionary record.

The handler before saving the dictionary record BeforeSave:

called in case of saving of created/edited dictionary record.

+IThe saved dictionary record is delivered at input.

Using the handler of this event, e. g., one can check the data and, if necessary, modify the data
before saving.

I+ After successful execution of the handler, the dictionary record will be saved, and the kernel will
call the handler after saving; in case of failed execution, an error will be returned.

The handlerin case of failed saving of the dictionary record SaveFailed:
Called in case of throwing an exception during operation for saving of the dictionary record.
+IThe saved dictionary record and exception thrown during saving are delivered at input.

The handler after saving the dictionary record AfterSave:

called after successful execution of the handler before saving and directly after saving of the
dictionary record but before transaction commitment..

+IThe saved dictionary record is delivered at input.

Using the handler of this event, saving can be canceled, having thrown an exception, and
modifications made to the dictionary record can be canceled (modifications cannot be made to
already saved record). The handler of this event can be also used for performance of automatic
actions, which must be completed only after correct saving of all data.

The handler before deleting the dictionary record BeforeDelete:

called before deletion of the dictionary record.

-+11D of deleted dictionary record is delivered at input;

Deletion can be canceled using this handler, having thrown an exception.

The handler in case of failed deletion of the dictionary record DeleteFailed:
called in case of throwing an exception during operation for deletion of the dictionary record.
-+11D of deleted dictionary record and exception thrown during deletion are delivered at input.

The handler after deletion of the dictionary record AfterDelete:

Called after successful execution of the handler before deletion as well as after successful deletion
of the dictionary record (the dictionary records do not exist any more), but before transaction
commitment.

-+ ID of deleted dictionary record is delivered at input;

Deletion can be canceled using this handler, having thrown an exception.

Besides, the application developer can modify the general handler of dictionary events - has the same
interface butis called at any events of dictionary record of any type.

© 2018 Ultimate 42

ULTRAATE

Developer SOLIn

The sequence of calls of dictionary events handlers:
1. Incase of saving:
e general handler before saving;
¢ handler before saving;
e saving modifications of the record in DB;
e general handler after saving;
e handler after saving;
If an error has occurred at any stages of saving, a handler will be called for exceptional situation
SaveFailed.
2. In case of deletion:
e general handler before deletion;
e handler before deletion;
e deletion of the record in DB;
e general handler after deletion;
e handler after deletion;
If an error has occurred at any stages of deletion, a handler will be called for exceptional situation
DeleteFailed.
3. In case of creation:
e creation of the object of corresponding class;
e receipt of new ID;
e general handler during creation;
¢ handler during creation;
4. In case of record loading:
e loading of the record from DB and initiation of the object;
e general handler of record initiation;
e handler of record initiation.

Scripts of documents

For each document (type), one handler can be created, executable in a number of events, which may
occur to the document.

ZF The handler in case of creation of document BeforeCreate:
called in case of creation of a document.
+IThe created document and parameters of its creation are delivered at input.
The handler of this event is used generally for automatic fill in of the fields of the head of created
document.

ZF The handler of document initiation AfterLoad:
called after opening a document but is not called at creation of new document.
+I1 The opened document and flag, defining if the internal objects of the document will be loaded,
are delivered at input.
Using the handler of this event, e.g. additional parameters can be loaded into the document.

L The handler before saving the document BeforeSave:
called in case of saving of created/edited document.
-+I1The saved document is delivered at handler input.
Using the handler of this event, the document data can be checked and, if necessary, modified
before saving, for instance:
e check if the credit of recipient is used up;
e check if the shipped product is in storehouse and, if necessary, replace it with the same product
from another storehouse, etc.

© 2018 Ultimate 43

ULTRAATE

Developer SOLIn

I+ After successful execution of the handler, the document will be saved, and the kernel will call the
transaction processor, or, in case of failed execution, an error will be returned.

L} Transaction scripts:
called with the kernel after successful execution of the handler before saving of the document. The
transaction scripts are associated with document subtypes (they may be several for each document
subtype) and executed at saving of the document of corresponding subtype.
-+IThe document, processed by the previous handler, collection of pairs of transactions (for balance
totals) and collection of transactions (for non-balance totals) are delivered at input.
The handler creates the transactions booked by the kernel as totals.
I+ As a result of successful execution, handler returns the array of transactions, and the kernel will
call the handler after document saving, or, in case of failed execution, an error will be returned.

ZF The handler in case of failed saving of the document SaveFailed:
called in case of throwing an exception during operation for document saving.
-+IThe saved document and exception thrown during saving are delivered at input.

The handler after document saving AfterSave:

called after successful execution of transaction processor (saving of transactions by the kernel into
the database) and after direct saving of the document but before transaction commitment.

-+I1The document, processed by the previous handler, is delivered at input.

Using the handler of this event, saving can be canceled, having thrown an exception, and
modifications made to the document can be canceled (modifications cannot be made to already
saved document).

The handler is also used for automatic execution of actions, which must be performed only after
correct saving of all data related to the document. For instance, upon processing of the order
received from internet shop by the manager, an e-mail should be sent to the buyer with notification
that their order awaits transfer to the delivery service. It could be executed using the handler before
document saving but a situation is actually possible when after correct completion of its work, an
error will be returned already by the transaction processor, followed with rollback of all
modifications made to the system, and the order will never be saved.

i

ZF The handler of generation of document description (value of the field Description)
GenerateDescription:
called after document saving but before the handler after saving.
+IThe document and description value are delivered at input;
Using the handler of this event, document description can be modified, which is generated by
default according to the template {DocumentType}({DocumentSubtype}) #{ID} {TRANSACTION_DATE}.

ZF The handler before deletion of the document BeforeDelete:
called before deletion of the document.
-+ ID of deleted document is delivered at input;
Deletion can be canceled using this handler, having thrown an exception.

ZF The handlerin case of failed deletion of the document DeleteFailed:
called in case of throwing an exception during operation of document deletion.
+11D of deleted document and exception thrown during deletion are delivered at input.

L} The handler after document deletion AfterDelete:
called after successful execution of the handler before deletion as well as after successful deletion
of the document (the document does not exist any more), but before transaction commitment.
+11D of deleted document is delivered at input;
Deletion can be canceled using this handler, having thrown an exception.

Besides, the application developer can modify the general handler of document events - has the same
interface butis called at any document events (except for generation of its description) of any type.

© 2018 Ultimate 44

ULTRAATE

Developer SOLIn

The sequence of calls of document events handler is as follows:

1

3.

4.

In case of saving:

e general handler before saving;

handler before saving;

transaction scripts;

saving of the head and data of table parts in DB;
saving of transactions in totals;

handler of document description generation;
general handler after saving;

¢ handler after saving;

If an error has occurred at any stages of saving, a handler will be called for exceptional situation
SaveFailed.

. In case of deletion:

e general handler before deletion;

e handler before deletion;

e deletion of the document in DB;

e deletion of transactions from totals;

e general handler after deletion;

e handler after deletion;

If an error has occurred at any stages of deletion, a handler will be called for exceptional situation
DeleteFailed.

In case of creation:

e creation of the object of corresponding class;

e receipt of new ID;

e general handler during creation;

e handler during creation;

In case of document loading:

e |loading of the document from DB and initiation of the object;
e general handler of document initiation;

e handler of document initiation.

Services and interfaces

ZF Services

The services are designed to store frequently used functionality. Each service implements one of
described interfaces, which allows calling corresponding methods both from those executed on the
server and from the client application. Once having written the service for solving of typical task, you
can resort to its functionality, while importing its implemented interface.

EF Interfaces

To describe the available set of functions for the service its interface should be also described. The
interfaces comprise a part of metadata and compiled together with the classes of dictionaries and
documents. Therefore, the compiled classes announced in the interface are available both on the
server and in client application.

LZF Mobile services

Implementation of services for mobile devices having Xamarin platform support. The mobile service
must be implemented by one mobile interface.

© 2018 Ultimate 45

ULTRAATE

Developer SOLIn

ZF Mobile interfaces
Implementation of interfaces for mobile devices having Xamarin platform support. In view of
limitations of software platform, they are separated from general interfaces. The mobile devices are
compiled into a separate library, which can be used in mobile application.

ZEF Web services
Allow being integrated with other systems on http, using the SOAP protocol or through REST services.
Implemented using message-based design.

Totals

T Drivers of the total
Called according to schedule by the mechanism for calculation of the kernel totals.
The drivers of the total are applied during calculation of variables of analytical tables of the totals.
The example of driver operation is given in the section Documents.

ZF Transaction validators
Called in case of saving a document.
The validators are applied to check the validity of the transactions created by the transaction scripts.

ZF User reports
There are two types of reports in the system:
e reports on the totals, which functionality is implemented completely with the kernel ;
e userreports.
The scripts of this type are called with the kernel during formation of a user report.
Applied to provide the user with an option to process and filter data, formulate only the request
kernel .
I+ As as result of its operation, the request kernel and list of report columns is returned.

ZF Column providers
Called by the kernel as part of report calculation.
+IThe report grouping parameters are delivered at input.
During formation of standard or user reports, the situations may arise when the system faces the data
structure, different from the standard one. In this case, it should be specified how to process them.
The Column providers are applied for that purpose.
I+ As aresult of operation, the providers return the parts of requests used afterwards for formation
of the report columns.

Creating simple commands

Let us explore how to create a simple command by the example of user command sending a message to
the user executing it.

© 2018 Ultimate 46

ULTRAATE

Developer SOLIn

Creating a command

Create a new record in the dictionary of user commands:

Y D ULTIMA Client: mick@localhost:3192 | Tools | = =3 =

A
-— | Developer ‘ Administrator (=]
o 22 Compile [& Dictionary commands | Jy User commands = & All scripts Documents [i7] Table parts —— E— L[_) | |u+] Hotkeys
] T3 Reload (5 Document commands (& Taslb 8 Total ~ | [[§ Dictionaries [%] Linktables | o T d
Tools o Dictionary name Script 1D Apps and

- ﬂ% Commit List commands - % Print forms %y Services - il Totals - More - — — — modules = [I=i Languages ~
Branch: temp Scripting Metadata Fast access Misc
1
1
& User commands = =R
00 F Es %e@y:.-;e; ql[r -lall & - =
Object identity Caption Guid
Set Caption for new command and save the record:

.?gs User commands, 1449 o B &
+«E User commands: 1449] nofiles ~ en | Execute OK Save Cancel
Command Parameters
Caption Send a test message to a current user en O & [name Ql #

Guid 547de153-bb 10-4d06-ba7a-6258ea59e075 |- y N N -
Name Caption Type Identity |Is Required Save History String Size |SortIndex DefaultValue |Referenced Dictionary ID
Script Click here to edit the script...
Folder User commands x
Parameters 0)None () Parameter list (Z) Custom form
Parameter form X
Tcon ¥ P-4
¥
Large icon
£ 3
Hot key cirl [] alt [T shift - x|Q
Tags
Developer's comments
comments

After saving the command, a script is created as well as selection of Hot key for command calling and
Parameters become available.

Adding a command to the interface

In order the user could execute a command, an option should be provided to call it.

In addition to combination of hot keys, the user dictionaries can be fetched via main menu:

ULTIMA Client: root@ocalhost:8192
@

— Kernel Items Dictionaries PrintForms

af [T Roles ,Trr :E.;n Current custer: Production platform EFy i - —

4 - i o anl Loagir [[E
s SF Predicates LA Current custer config e ses
Users Constants Clusters Sessions Performance Constant| Mame Printe:
= Permissions ¥ Versions tags
Access Control Configuration Monitor Fast access Prin

© 2018 Ultimate 47

ULTRAATE

Developer SOLIn

To add the created command to the main menu, use a form for setting of user interface (item Ul settings
of menu):

[User interface settings = =R
Open user interface template by user name or template name:
User name |1 ~ | root (Administrator) £ x| Template name |Root UI 3 (55) v Open Ul language: EE English -
UT template: Root UI 3 Available commands
Add mmma”dlb send X | | Find command
/' Quick Access Toolbar All (1) Command name Description [Hotkey |Identity |Icon
~ [M Main Menu Kernel (1)
Send a test message to a current user Send a test ... 547d...
5 |51 Kernel Ttems Add all commands 9 79,
* |2 Dictionaries Undo changes
» |2 PrintForms
v |z Commands Save
Test commands
Save as...
Assign to user.
Preview
Kernel Ttems Dictionaries PrintForms Commands @

The interface template should be edited for the user, who requires provision with a possibility to call a
command (in our case, it is Administrator with login root).

All user commands including newly created one can be found among the commands of group Kernel.

After adding a command to interface template and its saving, the command becomes available in the
main menu:

- Kernel Items Dictionaries PrintForms Commands

ULTIMA Client: root@ocalhost:8192

Send a test message to a current user

Test commands

Issuing of permissions

In addition to the option to call a command, the user must have the permissions to its execution.

For that purpose, in the roles dictionary find a Role of the user, who should get a possibility to execute a
command:

T3 Role = &8 =
= q, al| #
MName jin] - Identity Role name
w (Al 71 alexey.petrov
» [E System RN 73 ifinmanager N
> B T 83 [
= femp 75 mesobalev l’\?
v [Users 2

76 valie

© 2018 Ultimate 48

ULTRAATE

Developer SOLIn

In the Roles tab, you can make sure that the edited role is assigned to the very user, whom we grant
access to execute a command (in our case, it is Administrator with login root). Right there you can see,

what other users are, who can be assigned with the role, and who will be also granted access to execute
a command:

'?9 Rale, 73 = = 22
«E Role: 73 % | Mame |finmanager Falder oK Save Cancel
Roles | Documents | Dictionaries | Totals | Modules | Permissions | Commands | Predicates | Printers
Child roles All roles o, -}
Identity Role name Mame jin] Y
v (A =
» [E System [
2 > [E Temp a3
> [E Users 7w
Parent roles e B, Users
MName jin] Identity User name User login
v (Al 6 andry andry
» [E Users 2 no 1 Administrator root

On subtab "User Commands" of tab "Commands", grant access Allow to execution of the set command:

Roles | Documents | Dictionaries | Totals | Modules | Permissions | Commands | Predicates | Printers

Dictionary commands Document commands User commands
Record commands - |Q & -]
User commands D Command Name Derived Allow Revoke

1449 Send a test message to a current user

Now, after saving the modifications made to the role, Administrator has corresponding permissions to
execute a command.

Editting a script

Let us return to created command.

Following the link Click here to edit the script... in the command edit form, you can open the form to edit
its script:

[# Saripts, 1450 o B =R

«E Scripts: 1450 [E+ | Check source @ = Gotoline Current Element - oK Save g

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache {read-only)

/* TODO */

Let us name the script class and, therefore, the script itself SendTestMessageToCurrentUser.

© 2018 Ultimate 49

ULTRAATE

Developer SOLIn

The scripts are inherited from the interface IUserCommand. It can be seen in the part of the script,
which is generated automatically:

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)

1| uzing System; -
2 uzing System.Collection=z.Generic;

3 | using System.ComponentModel.Composition;

4 | using System.ComponentModel.Composition.Hosting; =
5| uzing Ultima; T
6 | uzing Ultima.Client.Actions;

7 | using Ultima.Composition;

2 | uzing Ultima.Composition.Hosting:

namespace Ultima.Scripting

b
C L B O

[Export (typeof (IUserCommand)), Script(l1450)]
public partial class SendTestMesszageToCurrentUser: IUserCommand

To send messages, we will require interface IUserMessages.

To use the services provided by the system, they should be imported. To do that, a property of the set
type should be announced and it should be marked with attribute [Import]. Import is carried out using
MEF, which details can be found in section Special managers:

[Import]
private IUserMessages UserMessages { get; set; }

Having imported the interface, it is possible to write the message to the user, realized the method
Execute of the interface IUserCommand:

Script text | Resources | Generated Text (read-only) | Generated Resx {read-only) = MEF Cache (read-only)
1| using System.Collections.Generic;

uzing System.ComponentModel .Compo=zition;
using Ultima.Client;
using Ultima.Client.ictions;
namespace Ultima.Scripting
public partial cla== SendTestMessageToCurrentUser
1 [Import]
1 private IUserMessages UserMessages { get; set; }

public wvoid Execute (IDictionary<string, object> parameterz, IList«<Clienthction> clientActions)

UszerMessages.CreatelUserMeszage ("Hello! This 1s my test message for you!"):

K

0 =1 o €0 s Lo B O L0 B0 =] oy O sl Lo B b

¥

Check the script for errors (button Check source in the script toolbar) and save it. Now it is possible to
execute the command:

Q ULTIMA Client: root@localhost: 8192 | Tools | = B 2
-
Kernel Items Dictionaries PrintForms Commands Developer Administrator (=]

Send a test messageISa current user

Test commands

1
| Windows ~ Il =] ‘ |

Windows ~ | [] 16:07 Hello! This is my test message for you! ‘ ‘ ‘

© 2018 Ultimate 50

Developer

ULTRAATE

SOLID

Accessing data via LINQ

Let us make a task more complex, having considered a possibility to access data using LINQ queries at
the same time. To do that, put the name of current user in the message.

Access to each system object can be obtained through its corresponding class using DataContext class.
To do that import the ITableSource interface.

Get IUserManager interface to obtain ID of the current user. Actually, it would be easier to obtain a user
name using it too but we have atask to use LINQ query:

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache {read-only)

using
uzing
using
uzing
using
using
uzing

F
[T S TS B e S . N BT S B O B T e (. R BT L B N P T Y S . T TV S

I

L G0 G0 G0 L0 L0 GO GO B BB B B B3 BI R RS BSF

=1 o N
o

3

Syztem.Collections.Generic;
System.ComponentModel . Compo=sition;
System.Ling;

Ultima.Client;
Ultima.Client.Actions:;
Ultima.Ling;

Ultima.Metadata:

namezpace Ultima.Scripting

puklic partizl class SendTestMessageToCurrentUser

[Tmport]
private ITableSource DataContext { get; set; }

[Import]
private IUserManager UserManager { get; =set; }

[Import]
private IUserMessages UserMessages { get; set; }

public void Execute (IDictionary<string, object> parameters, IList<ClientAction>» clientActions)

A/ get current usser ID
wvar userld = UserManager.CurrentUserID;
// get current user nams using LINQ
var userName = DataContext.GetTable<User>|()
.Where(u =»> u.ID == userld)
.Select (u => u.Name)
.Single():
// send message for current user
UserMessages.CreatelUserMessage ("Helleo, {0}! Your identity numbsr is {1}.", userName, userId):

Obtain user ID, request a name corresponding to this ID and send a message:

e LLTIMA Client: root@localhost:3192 [Tools = B R
-
Kernel Items Dictionaries PrintForms Commands Developer Administrator (=]

Send a test messagelia current user

Test commands

Windows Il =] & |

Windows ~ | [~ 17:43 Hello, Administrator! Your identity number is 1. ‘

© 2018 Ultimate

51

ULTRAATE

Developer SOLIn

SQL queries

The same can be implemented with SQL queries, using SqlService:

Script text | Resources | Generated Text {read-only) | Generated Resx (read-only) | MEF Cache {read-only)
1| using System.Collections.Generic;

using System.ComponentModel .Composition;

using Ultima.Client;

uzing Ultima.Client.fctions;

using Ultima.Server.Data;

BRI, T AR N

namezpace Ultima.Scripting

© o m

puklic partizl class SendTestMessageToCurrentUser

FNMMmoort?
[Import]

private IUserManager UserManager { get; set; }

[T A

b
R

[ITmport]

private IUserMessages UserMessages { get; =zet; }

public void Execute (IDictiomary<string, object>» parameters, IList<ClientlAction®» clientBActions)

user ID

UserManager.CurrentUserID;

3 Lo O
1
b
T

var userName = string.Empty;

e using JltimalbManagser

imaDbManager ())

. WL SV
1
n
H
1
|
=]
1]

Name from KERNEL.USERS where ID = :vID™

VAr guery = "zslect
userName = db.SetCommand (guery, db.Parameter("vID", userld)).ExecuteScalar<string>();

© 0o
v

'/ send message for current user

UszerMeszages.CreatelUserMessage ("Hellc, {0}! Your identity number is {1}.", userName, userId):

G L0 L0 G0 D0 Lo B B2 B BRI B B3 B B3 RS B

[T
o

et

Additional parameters query

If necessary it is possible to request the user, executing the command, to add the values of additional
parameters and to use them further when performing a script. In this case, the command execution will
be preceded by the opening of a form of additional parameters input. It is possible, for example, to
remove the user name in the message instead of the current user, corresponding to the identifier added
in the form of additional parameters.

Additional parameters of the command Parameters can be requested by means of the standard
automatically generated form (flag Parameters list), previously adding them to a list titled Parameters.
Oritis possible to request them by means of independently designed form (flag Custom form), in this
case there is no need to add parameters to the Parameters list, however it is necessary to design a
parameters form independently. Let’s consider the first, simpler option.

In the form of command editing it is necessary to choose the Parameter list flag for the property
Parameters, and to create necessary parameters in the list Parameters :

Py User commands, 1449 o B R
[User commands: 1449] nofiles - en | Execute oK Save Cancel
Command Parameters
Caption Send a test message to a current user en o qQl =
Guid 547de153-bb10-4d06-ba7a-6258ea59e075 - N - - N -
Mame |Caption |Type Identity IsRequired |SaveHistory |String Size |SortIndex | DefaultValue |Referenced Dictionary ID
Ea e »|UserD UserId Long —NUMEER(13) 2% 0 (none)
Folder User commands >
Parameters None (©) Parameter list Custom form

Each parameter has:
= Name — parameter name;
= Caption — name displaying in screen forms;
= Type Identity — parameter type (for more details see the section Data types);
» /s Required — flag, indicating whether the parameteris required to fill;

© 2018 Ultimate 52

ULTRAATE

Developer SOLIn

Save History — flag, indicating the need to remember the last user-added value;

String Size (available for data types Text and String) — limits the parameter size in specified value;
Sort index — index, by which the parameters in a screen form will be sorted. As index values any
integers can be used. Parameters will be ordered in the form from top to down in increasing order
of the index;

Default Value (is available for all data types except Binary) — parameter value by default which is
used in the form of additional parameters. Values of parameters have to be constants (integers,
lines), for dates itis also possible to use special values DateTime.Now and DateTime.Today;
Referenced Dictionary ID (is available for data types Long) — dictionary ID (object), which the
parameter is linked to.

Then you can pass to the script editing:

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)

R
[EERE I T SO W

B T A o P S R TR T X S S

N T SO T

Wb L0 L0 L0 L0 D8 L0 L0 L0 L0 LA B BRI B BRI BD BRI BRI BRI BRI RS e s e)

= oo

using System.Collections.Generic;

using System.ComponentModel.Composition;
using Ultima.Client;

using Ultima.Client.&ctions;

using Ultima.Server.Data;

using Ultima.Collections;

namespace Ultima.Scripting

public partial clas=z SendTestMessageToCurrentlUser

-'.";:-:r.

pri Jat,e‘_UserI{anager UserManager { get; =set; }
-'.";:':r.‘
private IUserMes=zages UserMessages { get; =et; }

public woid Execute (IDictionary<string, object> parameters, IList<ClientAction>» clienthActions)
decimal dUserId = default (decimal);

'/ try to gest user ID from paramsters

.E ('parameters.TryGetValue ("UserID", out dUserId))
return;

}

var userName = "Unknown ussr"!

/7 get current ussr name using UltimaDbManager

using (var db = new UltimaDbManager())

Iom:

var query = "select Name from KERNEL.USERS where ID = :vID
userName = db.SetCommand (query, db.Parameter ("vID", dUserl d]]._xecuteSca ar<string>():

// send message for current ussr
UserMessages.CreateUserMessage ("You input (0} as idsntity number., This user is {1}.", dUserId, userName):

© 2018 Ultimate 53

ULTRAATE

Developer SOLIn

We get the user ID from a form of additional parameters. Control element SpinEdit, used in the
parameters form generated by the Ultimate AEGIS® system, returns a value of type decimal. We request
the user name corresponding to this id, using SqlService. Finally, we send a message to the current user
(in the parameters form inquiry to click the OK button is also possible by the combination of keys |Ctl +

Enter):
e ULTIMA Client: root@localhost:3192 | Tools | = B 22
-
Kernel Items Dictionaries PrintForms Commands Developer Administrator =]

Send a test messagelia current user

Test commands

! |
Windows - Il =] & |

v

Send a test message to a current user o @B ER

User ID 2|2

Windows -+ | [~ 18:09 You input 2 as identity number. This user is Demo. & ‘ |

Developer tools

This chapter describes developer tools of the client application Ultimate AEGIS®.

All the basic tools of application developer of the system Ultimate AEGIS® are arranged in the tab
"Developer", which is available to any user, which role has Developer permission:

ULTIMA Client: root@localhost:3192 | Tools | = @ =
= Kernel Items Dictionaries PrintForms Commands CnpaBauHMKK NokyMeHTEl Wrark | Developer | Administrator (2]
g Compile ~ E Dictionary commands :-,', User commands [All scripts Documents [Table parts l[_J | |U+] Hot keys
77 T Reload ~ (F Document commands (&) Tasks £ Total - [E pictionaries [%] Linktables | o
Tn‘nls |}Q7 Commit List commands - % Print forms ’Ls_ﬁ‘g Services = il Totals 4 More - nfggj::‘j [l=i Languages ~
Branch: temp Scripting Metadata Fast access Misc

The tools are broken down by groups:

e the first group of the tab - tools for working with the system for version control. The system for
version control and tools for working with it are described in the chapter Version control;

e Scripting — tools for working with commands and scripts. In the chapter Scripts the mechanisms are
also described for access to data and special managers;

e Metadata —tools for working with metadata objects;

e Fast access —tools for fast access to the objects;

e Apps and modules —tools for working with applications and modules. In addition to the tools, in the
chapter Applications and modules, the peculiarities are described for creation, modules, screen forms
as well as specific control elements;

e Misc—other tools.

In addition to these tools, the section describes also:
e translation of exceptions;
e predicative access;

© 2018 Ultimate 54

ULTRAATE

Developer SOLIn

e procedures for logging control;
e Tools of tracing, used for control of step-by-step execution of application;
e Description of KERNEL scheme.

Metadata

Metadata group tools are intended for creation and editing metadata
objects describing activities of the company:

U+| Haot keys

[=i Languages ~

e dictionaries and link tables o Misc tools -

e documents and table parts | Show possible memory leaks

) tota|s and etc Test windows and search for leaks
Fs MEF explorer

Preserved objects

Issue trackers I}
Objects issues

Metadata in particular consist of objects in the DBMS, however DBMS objects aren’t directly created by
these tools. They only generate script intended for creation of DBMS objects of SQL-script. Respectively,
deleting metadata objects from the system won’t entail physical deleting objects associated with them
from the database (if they were created).

Creation of new metadata object assumes three stages:

1. asaresult of creation and saving a new metadata object by means of the Metadata group tool, in the
system Ultimate AEGIS® object class by means of which the metadata object will be provided in an
application server will be generated;

2. After compilation and reload of meta data the generated class can
be used when writing, for example, scripts or handlers. Also object
open command will be available;

3. and, at last, metadata objects will be created in DBMS after SQL- Regencrate metadata classes
script execution. Regenerate webservice classes

£, Compile ~
R | g
Tools

= Compile and reload metadata
Brg

Compile metadata

Regenerate and compile scripts

Iy

Recompile all scripts

By means of SQL-script generated by Metadata group tools the following DBMS objects are created:

e tables;

e table view which are used for localization of objects and support of time zones (for DateTime data
type);

e triggers;

e RLS functions responsible for the access checks and predicative access.

To the discretion of an application developer it is possible not to create excess objects in DBMS, for
example, RLS function if metadata object doesn’t assume use of predicative access, or table views with
appropriate triggers if the metadata object isn’t localized and has no DateTime properties. However any
decision of this sort should be made circumspectly.

SQlscript needs to be executed in the Ultima scheme in any application for work with the relational
databases supporting SQL, for example, PLSQL Developer and TOAD.

Just before the script execution it is necessary to specify on behalf of what user Ultimate AEGIS® and on
what branch of meta data changes are made. For this purpose it is necessary to execute
KERNEL.SET_LOGIN method having specified the user login and an application server code were given:

EXEC KERNEL.SET_LOGIN('UserLogin', 1)

© 2018 Ultimate 55

Developer

Dictionaries

ULTRAATE

SOLID

H:| You can view existing and create new dictionaries in the Dictionaries:

o =R

- [2 | % Common eventscript << Filters &

Articles

[=| Dictionaries
o 3 o Hide system
Identity System name -
102 AppCluster
103 AppServer
» 2945 iArticle -
k Ed It
3456 ArtideFeature
——————— & Delete
f Clone
L_‘g Browse dicticnary...
@7 Edit event script...
Select rows
Select cells

4

Caption
Application duster

Application server

Artide features

tda famh Ire ArolINe

System (kernel) dictionaries are highlighted with gray color. The application developer has no
permissions to edit or delete them, but has a permission to read.

The dictionary records can be filtered by Dictionary name (System name). The system dictionaries can

be hidden, having set a flag Hide system.

In selection of analytical columns it is possible to select localized columns of the name (Caption) in all

languages that are available from system:

Column settings

Available columns
Caption.en
Caption.ru

Selected columns

English

i Russian

Search

Reset

Save and dose

by clicking &} Common event handler in a toolbar the script of a dictionary event handler is available.

Arrangement of storage for the structure of dictionaries at the database level is detailed in the section

Dictionaries in the chapter KERNEL scheme.

Cloning of metadata objects such as dictionaries and link tables is detailed in the Metadata cloning

section.

© 2018 Ultimate

56

Developer

ULTRAATE

SOLID

For convenience dictionary properties are grouped in tabs in the form of its structure editing:

[Store, 3637 = B =
g Dictionaries: 3637 ([& | T SOLscript %P Classcode | &F Eventscript [Editor script [iil] Column provider script | [T QK Save < Cancel
Main | Properties | Link tables | Lists | Commands | Print forms | Analytic column providers
= Set | +
Name Store & Tcon ¥ &b S —
Class name Store | Transparent translation & .Operatlon lany =
\ i > Role:
Caption Stores en | Cached Large icon B% v Role: User
Guid b850612f-924d-49b7-845e-15828147 & Hot key Ctrl Alt Shift * X9 &5 Read o
Create
Parent property - | X Metadata tags e
Update
Database Delete
Table name STORES a v Role: Apmminctpatop
Read 7
Sequence name |STORES_SEQ & Create 7
Mapping object |VSTORES a Update 7
. i y Delete 4
Logged | Check this box to enable logging Developer comments edit user help
+ Role: Hauanohnk cknaga
Stores
Lookup behaviar Read
Digplay format | {Mame} Create 7
cearch x Update i
earch property Delete v

The dictionary class name and its ID are displayed in the form heading.

In the form toolbar in addition to the dictionary identifier (it is appropriated automatically) there are
buttons:
90t SQL script — SQL script is intended to enter dictionary objects in the database:

Agents o B
Create SQL | Alter SQL
1 | CREATE TAELE RGENTS -
201
3 ID WUMBER (13) NCT NULL, B
4 NAME VARCHARZ (256 CHAR) NCT NULL,
5 PHCONE VARCHARZ (25¢ CHAR) NCT NULL,
4] EMAIL VARCHARZ (236 CHAR) NCT NWULL,
7 ADRESS VARCHABRZ (25¢ CHAR) NCT NULL
AR 2
€| 1 [
Close

= inthe Create SQL tab there is a script used to enter dictionary objects in the database. This script
can be applied if the object is created in the DBMS for the first time;;
® in the Alter SQL tab there is a script used to change earlier created dictionary objects in the
database.
= buttons on the control bar located in the upper part of the form allow:
= L — to execute the current script in the database,
= [J — to copy the current script in a clipboard,
» H — to save the current scriptin the file on a disk.

Before script execution it is necessary to add rights for the created dictionary in an user role. If
there are no dictionary rights, some operations in the database can be unavailable.

IN)

%F Class code — class that describes a dictionary record will be generated in C#:

© 2018 Ultimate 57

Developer
Class code = B 2
z
':q beshavigr and will bs leost if
:4: ;' the selutioen explorsr
_: imply re-save 1t from inside VisualStuodio.
:: namespace Ultima.Metadata 3l
4 n L
£ Event script — a script dictionary event handler. During creation of new dictionary, the events

handler is not created. The system suggests to create it by first click. At the same time all changes

entered to the object will be saved:

P '\
Attention! ﬁ

Event script doesn't exist, Create a new one?
. Mote: this will save all changes,

[ok

I

W 4

The script of the dictionary event handler can also be opened through the shortcut menu of the
dictionary list form.

[iii] Column provider script — script of column provider of a dictionary. During creation of a new object,
the column provider is not created. The system suggests to create it by first click. At the same time all
changes entered to the object will be saved:

[— a button of opening of a list form of the edited dictionary (functionality works only for already
created dictionaries). Also it can be opened through the shortcut menu (item Browse dictionary...) of
the dictionary list form.

Cancel l

A Inthe Main tab main dictionary properties are organized:
e Name —dictionary name. It shall correspond to one dictionary record

Main | Properties | Link tables | Lists | Commands
name (to be in singular). In an example it is a dictionary name Store
— Store. If necessary, it can be changed: Name
rWarn'lng ﬁﬁ

Mame |ObjectName & | ==

l ..‘

Renaming this object will result in cascading update of many other
objects referencing it. Saving the modified object will take a lot of time,
and certain references will not be updated automatically. Proceed with

renaming?

[QK Cancel

||

)

"

= = = Name |Objectilame|

.

e Class name — dictionary class name. It is generated automatically based on Dictionary Name;

e Caption — thatis displayed in screen forms (for example, in title of the list form) is a dictionary name.
Itis generated automatically based on Dictionary name by its partition on single words and transfer to
plural. For example for a dictionary with the name AgentAddress this property will have meaning

Agent addresses;
e Guid — is used to identify a menu item.

Guid is generated automatically at random and, if necessary, (in case of coincidence with Guid of

another object) can be changed:

Guid

33c01a4e-e476-4825-9cd9-d5f363a7a372 @ = = P |33c01ade-e475-9825-9cd9-d5f363a7a372 4| = = P | 78e790ff-03e2-4d13-820a-1af0993929b8 | ©

© 2018 Ultimate

58

ULTRAATE

Developer SOLIn

e Parent property — allows organizing the dictionary in a tree structure (not a mandatory option) if it is
specified a property link of the dictionary referring to it as value of this property. It is recommended
as the name (Name) of this property link to use Parent/D value. Besides this property shall be not
mandatory (a Not null flag shan’t be set for it);

e property group Database — dictionary object name in the application database scheme:
= Table name — dictionary table name.
= Sequence name — Sequence name used for identifier (ID) generation of dictionary records;

* Mapping object — the object name on which LINQ requests are displayed. By default this is name of
the generated view.

» logged — determines if the logging of this dictionary is enabled. When this flag is checked, the
generated dictionary script includes the calls to the PACK_LOG package enabling the logging of the
chosen dictionary properties. The default value is true (checked).

Property group names Database are generated automatically based on Dictionary name and if

necessary they can be changed:

Database Database
Table name AGENTS 7} == Table name AGENTS| 24

Names may contain only letters of the Latin alphabet, digits and asign "_". At the same time the name
shall begin with a letter and its length shan’t exceed 30 characters (available quantity of characters is
displayed in a control element).
It is possible to replace view with the table to increase productivity, however in this case
multilingualism and translation of time won't be supported. If any of these functions aren’t required,
and the table is very strongly loaded, it is possible to refuse from views;
e Property group Lookup behavior:
= Display format — a format in which dictionary records are displayed in the screen forms, when they
are produced notin table but in the row form (for example, in control elements).
To receive at the output a string as “13, name” where the first value are ID records, and the second
separated by a comma — value of Name property, specify a string ”{ID}, {Name}” as field value
Display format.
Date formatting is supported, for example, for field value Display format
“{DateTime:d}’{DateTime:d}” only date without time will be removed (information on all available
formats of dates can be found on the website MSDN =+ eng/rus);

= Search property — dictionary property among which values search is carried out in a dictionary list
form orin a control element;

e Notification enabled — a flag allowing to send notifications among all cluster servers on entering
changes into dictionary data. For cashed dictionary, the notifications are distributed always
irrespective of flag status; If the dictionary is often changeable, it can lead to essential growth of
traffic between servers and clients;

e Transparent translation — a flag of localization transparency (with the set flag the dictionary is
transparent localized);

e Cached — a caching flag. With the set flag the dictionary is cached on computers of end users. In case
of its repeated retrieval, the data are taken from the local copy but not from database server, which
can be used for the dictionaries with rarely changed data. For cached dictionary, the notifications of
the change are always distributed, therefore dictionary with frequently changed data should not be
made cached.

e Jcon —standard icon (with the size of 16 x 16 pixels).

Icons are displayed, for example, in the main menu or in the window title of a list form and a
dictionary edit form.

The buttons to the right of icon preview area allow:

|~ —loading the icon;

—saving the icon previously downloaded to the computer;

26 —deleting the icon;

© 2018 Ultimate 59

https://msdn.microsoft.com/en-us/library/az4se3k1.aspx
https://msdn.microsoft.com/ru-ru/library/az4se3k1.aspx

ULTRAATE

Developer SOLIn

e Largeicon —alarge icon (with the size of 32 x 32 pixels);

e Hot Key —shortcut keys, which call the opening command of a dictionary list form. Using the flags, one
or several functional keys (Ctrl, Alt and Shift) can be selected, and a symbol key can be selected in the
control element to the right of them.

The buttons of the control elements, using which symbol selection is made, allow:
* —to select asymbol;
X |—to delete the selected value;

4, —to view, if such shortcut keys occur for any other command:
e Metadata tags —tags used to describe dictionary functionality.
For example, in the next configuration version some delivery functionality (a delivery tag) was, which
includes several new dictionaries, document types, changes in a row of system existing objects, etc. If
the dictionary is marked with this tag, further it can be found by mean of this tag in the list of the
other objects realized under this functionality.
The tagis added by keys |Space or |[Enter|. Delete —by button %* after the tag. As the gap is used for the
taginputitis possible to replace it with characters “_” or “-” in tags with the name of several words;
e Developer's comments —comments of the application developer;
e edit user help — comment to the object (in this case to the

L. . . Metadata user comments o B
dictionary) which the end user can see in the form of a
(hint) which drops down after mouseover. The comment js || = eemmentsfer Agents oK Caneel
en ru

entered for any language of the system;

e Setup roles — arole list for fast draft right set up for the dictionary. Opposite to each operation there
are Allow and Revoke flags, which respectively include or turn off access to the dictionary. The role list
allows checking easily whether the rights for the dictionary are given at least somebody in system.

A In the Properties tab a dictionary property list is at the left, in the middle — all parameters of the
property selected at the left, at the right — a list of dictionary properties Lookup properties, which will
be displayed in the dropdown list of control elements (for example, DictionarylookupEdit or
DictionaryMultiSelectEdit):

Main | Properties | Link tables | Lists | Commands | Print forms

b Name OfficelD Lockup properties s Q
Name: Caption DB Name Not null | Type Caption Office identity en Name Caption.ru Caption.en
D Identit 1D v AU
- 5 DBriame |OFFICE_ID & i Name 7= S
Name Name NAME ¥ string(256) not null Office Name Odme Office
iOfficelD Office identity OFFICE_ID ¥ Long (Offices) not nul Type Long — NUMBER (18) ~
PrimaryPrinterID Primary printer identity PRIMARY_PRINTER _ID Long (Printers) | Not null [+ Reference Filter [#/| Logged
Default expr,
Reference
Name Office
Caption Office en
) Dictienary constants = Lo}
Dictionary 3610 | v | Office £
Name Value Developer's comments
Metadata tags ¥ | DefaultFRC 1

Developer comments edit user help

The properties can be added or removed & using corresponding buttons in the toolbar of the tab:
Also properties can be filtered by Name (Name).

Each property has:

e Name —name;

e Caption —a name displayed in the screen forms; It is generated automatically based on property Name
by its partition on single words;

© 2018 Ultimate 60

ULTRAATE

Developer SOLIn

e DB name — name of the appropriate field of the dictionary table in the application database scheme.
Name is generated automatically based on Property Name; If it is necessary change it in the same
way, as well as names of dictionary objects in the database. Field name has the same restrictions, as
other DB objects names have;

e Type — property type (see details in section Data types). Depending on type a row of specific
parameters can be available:
= Property Reference group (it is available to data type long, marked by Reference flag):

» Name —areference name;

= Caption — reference description. It is generated automatically based on reference Name by its
partition on single words;

= Type — reference type: Dictionary or document);

» Dictionary/Document — a dictionary or a document type which property refers to. When a
document type specifying, a typed reference to the document will be created. When record
browser opening a relevant document log will be opened, in case of column selection it will be
possible to add a column from a title of the appropriate document type;

= Max Size (available for the types of data Text and String) — limits the size of property value by the
specified value;

= Multilanguage (it is available to data types LargeText, Text and String) — a flag specifies that
property is Multilanguage;

e Not null-aflagindicating if the property is mandatory for fill-in;

e Reference (it is available to data type long) — a flag specifies that property is a link to dictionary or a
document;

e Filter — specifies that this property will be displayed by default in the filter of the dictionary list form;

e Logged — specifies if logging of this property should be enabled (if logging is enabled for the given
dictionary);

e Default expr. — C# expression creating property value by default. Expression value is added in
property automatically during creation of a new dictionary element.

For example, itis possible to output an information message as value Text property:

“Enter as this field value current date in the YYYY-MM-DD format where YYYY is a year, MM
- month, and DD - day"

Or it is possible as value of the same property directly to remove current date having specified the
following expression as Default expr. parameter value:

DateTime.Now.ToString("yyyy-MM-dd HH-mm-ss™)

e Metadata tags —tags used to describe dictionary property functionality. They are similar in meaning
to dictionary tags. Used for searching the objects implemented for certain functionality associated
with such tag.

e Developer's comments —comments of the application developer;

e edit user help —comment to the object (in this case to the dictionary property) which the end user can
see in the form of a hint which drops down after mouseover. The comment is entered for any
language of the system;

EEH In the Lookup properties list there are properties which will be displayed in the dropdown list of
control elements (for example DictionaryLookupEdit or DictionaryMultiSelectEdit). If this list is empty,
properties listed in Display format (on “Main” tab) will be displayed. Lookup properties can be added
or deleted by & appropriate buttons in a toolbar, and also filtered according to Name (Name).

In the Lookup properties list both dictionary properties and

Lockup properties Q
property of other dictionaries to which this dictionary refers by _ _
. . . MName Caption.ru Caption.en
means of properties links can be listed. In an example above | |,... E— —

mentioned — this is Name property of the Store dictionary and | |office.name Ouc Office
Name property of the Office dictionary specified in the
Office.Name format.

© 2018 Ultimate 61

ULTRAATE

Developer SOLIn

Property name are specified in the list column Name and in the columns Caption their localized names
for display in screen forms (control elements) for each of system languages are specified.

EEH In the Dictionary constants list dictionary constants are listed. Constantscan be added) or deleted by
2 appropriate buttons in a toolbar, and also filtered according to Name (Name).

Dictionary constant existence removes the application developer the need to hard code record codes or
to create for this purpose separate constants in the constant dictionary:
record.TypeID = DictionaryName.Constants.ConstantName;

Names and values of constants are specified in the list columns Name and Value and in the column

Developer’s comments — comment of an application developer.

A In the "Link tables" tab there is a list of link dictionary tables at the left, at the right there are all
parameters of the table selected at the left:

Main | Properties | Link tables | Lists | Commands | Print forms

Q

Mame Employees
Mame Caption Caption Employees en
Employees Employees
Link table StoreEmployee -
Linking property |StorelD -
Metadata tags
Developer comments sﬂ!ﬁgﬁs[,bs_lg

Link tables can be added &} or removed & using corresponding buttons in the toolbar of the tab: Also
link tables can be filtered by the Name (Name).

Each link table has:

e Name —name;

e Caption — a name displayed in the screen forms; It is generated automatically based on link table
Name by its partition on single words;

e Link table — directly a link table;

e Linking property — a property of the link table which refers to this dictionary;

e Metadata tags —tags used to describe link table functionality.

e Developer comments —comments of the application developer;

e edit user help — comment to the object which the end user can see in the form of a hint which drops
down after mouseover.

© 2018 Ultimate 62

ULTRAATE

Developer SOLIn

Before adding a link table to the dictionary, it needs to be created (see Link tables). It is possible to
select a link table only among those which property link refers to the current dictionary. If adding the
link table to the dictionary, the user in the dictionary edit form will be able on a separate tab with the
name corresponding to Caption property to see the list of the link table records associated with it, to
add new records in it, to edit and delete existing records:

[Agents, 70 = B

«E + | Agents: 70 en & - +q OK save Cancel

Attached dictionary | Additional adresses
Mame

Phone number I 2 & [
E-mail Additional adress | Adress User comment
Delivery adress

Parent w |--- 4|

A In the "Lists" tab the list of embedded dictionaries is located, on the right all parameters of the
embedded dictionary selected at the left:

Main | Properties | Link tables | Llists | Commands | Print forms

- Q

Mame AttachedDictionary
EnE el Caption Attached dictionary en
AttachedDictionary Attached dictionary
Dictionary MewTestDict -
Ref. property | AgentID -
Metadata tags
Developer comments edit user help

Embedded dictionaries can be added or removed £ using corresponding buttons in the toolbar of
the tab: Also embedded dictionaries can be filtered by the Name (Name).

Each embedded dictionary has:

e Name —name;

e Caption —a name displayed in the screen forms; It is generated automatically based on embedded
dictionary Name by its partition on single words;

e Dictionary — directly the embedded dictionary;

Ref. property — a property of the embedded dictionary which refers to this dictionary;

Metadata tags —tags used to describe the embedded dictionary functionality.

Developer's comments —comments of the application developer;

edit user help — comment to the object which the end user can see in the form of a hint which drops

down after mouseover.

© 2018 Ultimate 63

ULTRAATE

Developer SOLIn

Before adding a embedded dictionary, it needs to be created. It is possible to select a embedded
dictionary only among those which property link refers to the current dictionary. When the embedded
dictionary adding the user in the dictionary edit form will be able on a separate tab with the name
corresponding to Caption property to see the list of the link table records associated with it, to add new
records in it, to edit and delete existing records:

[Agents, 70 = B
o +~ | Agents: 70 en & - e 0K Save Cancel
Attached dictionary | Additional adresses
MName
Phone number - Q) 2
E-mail Identity Mame
Delivery adress
Parent w |--- 4| X

A Inthe "Commands" tab there is a command list, available to this dictionary:

Main | Properties | Link tables | Lists | Commands | Print forms

Commands List commands
= =
Identity Caption Hot key Identity Caption Hot key
3 2383 Show all invoices from this agent Cirl+A b 1715 Send message to agent's list Cirl+Alt+D
2406 Send e-mail to selected agents Ctrl+8

In the left part of the tab the "Commands" list over one dictionary record (which are available through
the shortcut menu in the dictionary list form or from the record edit form) is located, in the right part —
the List commands over several dictionary records (marked in the dictionary list form) is located.

The commands can be added or removed & using corresponding buttons in the toolbar: When
adding the command edit form will open. When deleting the command will be deleted not only from
the list, but also from the appropriate command dictionary.

Commands added through list forms of the appropriate dictionaries will be automatically displayed in
these lists.

A Inthe "Print forms" tab there is a list of printing forms used for this dictionary:

Main | Properties | Link tables | Lists | Commands | Print forms

Single record Records list
Print form identity Print form identity
b | 2394, Test print form by Igor, XR ¥ | 2394, Test print form by Igor, XR

In the left part of the tab the "Single record" list of print forms used when one dictionary record printing
(they are available when printing from the form of dictionary record edit) is located, in the right part —
the "Records list" — the print forms used when printing several dictionary records printing (marked in
its list form).

Print forms can be added £} or removed & using corresponding buttons in the toolbar of the tab: When
adding the list form of print forms of the dictionary will open wherein it will be possible to select by
double left-click a necessary print form. When deleting in the appropriate printed form for the the
dictionary Assign flag will be deselected (a print form at the same time won’t be deleted).

© 2018 Ultimate 64

ULTRAATE

Developer SOLIn

Print forms assigned to the dictionary from the edit form of print forms will be automatically displayed
in these lists.

Dictionary record class

During creation of each dictionary, a dictionary record class is generated. Its initial description is
represented with dictionary Name, and the list of its properties is represented with corresponding
dictionary properties.

Forinstance, let us consider creation of simple dictionary DictionaryName with the properties ID, Name
and ReferencelD.

The model class of the subject area, generated according to this description, looks like as follows:

public partial class DictionaryName : IDictionaryRecord

{
public long ID { get; set; }
public string Name { get; set; }
public long ReferenceID { get; set; }
}

All classes of dictionary records (and only they) implement IDictionaryRecord interface. Therefore, a list
of all classes of dictionary records can be obtained by requesting who implements this interface:
public interface IDictionaryRecord : IEntity, IBusinessObject

{

// Returns the link tables associated with the dictionary record.
IKeyValueStore<string, ILinkTable> LinkTables { get; }

// Returns the collections of dictionary records associated with the dictionary

record.
IKeyValueStore<string, IDictionaryTable> DictionarylLists { get; }
}

The field of type EditableValue<T> corresponds to each dictionary property, where T is one of types
indicated in metadata:
private EditableValue<string>name; ///field

public string Name ///property
{

get { return name.Value; }
set { name.Value = value; }

}

A collection of type DictionaryTable<T> may also correspond to the property (where T is a type of
collection element).

Example of use:

[Import]
private IDictionaryManager DictionaryManager { get; set; }

// Get the dictionary record.
var dictionaryRecord = DictionaryManager<DictionaryName>.GetRecord(10);

// Get the value of the property Name of dictionary record.
var name = dictionaryRecord.Name;

// Get the link table of dictionary record.
var linkTable = dictionaryRecord.LinkTableName;

© 2018 Ultimate 65

ULTRAATE

Developer SOLIn

Link tables

“F\: Link tables are used for keeping links between the dictionaries in the system.

Viewing existing and creating new link tables can be made in the dictionary Link Tables:

%4 Link tables = B
o F & Q, Hide system | = < Filters i
Identity |Mame Caption Database table name Map object name Developer's comments | &
321 RoleTreeNode Role tree node ROLE_TREE ROLE_TREE =
300 AppServerTask Application server tasks APP_SERVER _TASKS APP_SERVER_TASKS
1537 AgentAdress Agent's additional adresses AGENT_ADRESS VAGENT _ADRESS
313 RolePredicate Role predicate ROLE_PREDICATES ROLE_PREDICATES

The system (kernel) link tables are highlighted with grey in the list. The application developer has no
permissions to edit or delete them, but has a permission to read.

The dictionary records can be filtered by Name of the link table. The system link tables can be hidden,
having set the Hide system flag.

Arrangement of storage for the structure of link tables at the database level is detailed in the section
Dictionaries in the chapter KERNEL scheme.

Cloning of metadata objects such as dictionaries and link tables is detailed in the Metadata cloning
section.

The form for editing of the structure of link tables has lower number of properties as compared to the
form for editing dictionaries:

<% Price, 3329 = B

| Link tables: 3329 (27 & | 9 SOLscript ©F Class code oK Save - Cancel

Main | Properties

Mame Frice @ Icon W e

Class name Price Metadata tags

Caption Prices en

Database

Table name PRICES a Developer comments edit user help
Mapping object |VPRICES a

Logged Check this box to enable logging

The link table class name and its ID are displayed in the form heading.

As distinguished from the dictionary, the link tables do not support multilanguage option, have no list
form and cannot be added to the main menu. As a result, they do not require hot keys, guid and large
icon.

Using 3 SQL script button, you can view SQL script for creation or change of the objects of DBMS table
part.

© 2018 Ultimate 66

Developer

ULTRAATE

SOLID

Using ©F Class code button, you can view the class generated in C#, describing the link table record:

<% Link tables, 1637 = EBEOE
«E Linktables: 1637 | 9% SQL script | & CIESSSE.IE oK Save Cancel
Main | Properties
1
1
v
¥ agentAdress — Class code o =R

24 { <summary»
25
26 fsummary
27 [(Name = "VAGENT_ADRESS"), Seri
28 [LocalizedDisplayName (typeof(AgentAdr
29 public partial class AgentAdress : IL
EL:] I
31 ' <summary >
32 Gets or sets
33 </summary >
34 [Column(Mame = "AGENT_ID", CanBeNull
35 [sable(true)]
36 [LocalizedDisplayName (typeof(AgentAdress),
37 public long? AgentID
38 I
< | m |

ress), "Ultima.Metadata.Classes.Resources” , "Agenth

Zable

inki’ableRecor‘d, IEntity, ISerializable, ICloneable

true)]

"Ultima.Metadata.Classes.Resources™, "Ag

The properties of the link table are described on the whole similarly to dictionary properties. The only
difference is in the Primary key flag, which indicates that this field is included into the primary key (for a
dictionary, the primary key is always represented with the /D field). For such fields, the Not null flag is
automatically checked as well, and it cannot be unchecked manually:

Main | Properties
Q @ |Name & Mame PriceZonelD
System name Caption DE Mame Not null | Type PK Caption Price zone identity en
) o 7 - 7
rice zone identity PRICE_ZOME Long (Price zones) not null DE name PRICE_ZO0NE_TD a
ArtideID Artide identity ARTICLE_ID o Lang {Articles) not null J
PriceTypelD Price type identity PRICE_TYPE_ID o Long (Price types) not null v Type Long — NUMBER (18) M
Value Value WALUE #| Dedmal not null | Reference || Primary key || Logged
Prevvalue Prev value PREV_VALUE Dedmal Default expr.
Updated Updated UPDATED DateTime
Reference
Name PriceZone
Caption Price zone en
(@) dictionary () document
Dictionary 3083 |~ ---||PriceZone o
Metadata tags

Developer comments edit user help

© 2018 Ultimate

67

ULTRAATE

Developer SOLIn

To link three dictionaries by using a link table (the above screenshot represents PriceZonesID, ArticlelD
and PriceTypelD), the three properties of the link table should be made as links to these dictionaries. For
the property-link in the brackets after the type (the link is always of long type), the dictionary name,
which it refers to, is indicated.

Now to provide the end user with a possibility to fill in the data of the link table, in the tab Link Tables,
the created link table should be added to the record of corresponding dictionary. If the users should be
provided with a possibility to fill in the link table with the data from any of the dictionaries, it should be
added to both, if only from one —into one.

Thus, three and more dictionaries can be linked using the link table.

In addition to the properties-links, creation of common properties can be also made in the link table. In
this case, the user will be able not only to link the dictionary records between themselves but associate
that link with the data set.

@ Arrangement of the products price lists can be furnished as an example of such link. Two
dictionaries — Products and Price columns — are interconnected between themselves using a
link table price list , which in addition to two properties-links to these dictionaries contain
additional property Price. The user supports it with price input while selecting a column for
particular product.

If the product must have the only price in each price column, the properties-links of the link
table price list should be made key ones having set Primary Key flag for them. In this case, it
will be possible to add only one record to the link table for each Product-Price column set.

Class of link table record

During creation of each link table, a class of link table record is generated. Its initial description is
represented with link table Name, and the list of its properties is represented with corresponding link
table properties.

For instance, let us consider creation of simple link table LinkTableName with ReferencelD,
AnotherReferencelD and Value properties.

The model class of the subject area, generated according to this description, looks like as follows:
public partial class LinkTableName : ILinkTableRecord

{
public long ReferenceID { get; set; }
public long AnotherReferenceID { get; set; }
public decimal Value { get; set; }

}

All classes of records of the link tables implement ILinkTableRecord interface. Therefore, a list of all
classes of records of the link tables can be obtained by requesting who implements this interface:
public interface ILinkTableRecord : IEntity

{
}

The field of type EditableValue<T> corresponds to each property of link table record, where T is one of
types indicated in metadata:

Example of use:

[Import]
private ITableSourse DataContext { get; set; }

© 2018 Ultimate 68

ULTRAATE

Developer SOLIn

var reference = 10;
var anotherReference = 11;

var query =
from linktable in DataContext.GetTable<LinkTableName>()
where
linktable.ReferenceID == reference &&
linktable.AnotherReferenceID == anotherReference

select linktable.Value;

return query.Single();

Document types

Viewing existing and creating new document types can be made in the Document types dictionary:

Document types o =i
@ 1 & || Hx - [El 2 | % Common event script < Filters @
Identity System name + | Caption fab
22255 Acceptancelist Acceptance lists A
3 22116 EAcceptanceRequest Acceptance requests 0
E Bt b
12217 AccountableCash k : Accountable cash
17955 ArrountinaSale o Delete reounting sales
f Clone
E

Browse documents...

= Edit event script...

Select rows

Select cells

The dictionary records can be filtered by Name of document type (System name).

The analytical columns selection allows selecting columns captions (Caption) localized to all system
languages:

Column settings 53
Available columns Selected columns
Caption.en English
Caption.ru . Russian
Search Reset Save and dose

In "Caption" column names are displayed in current user language.

Button EFCommon event handler in the toolbar shows a script of the event handler of all documents.

Arrangement of storage for the structure of documents at the database level is detailed in the section
Documents, chapter KERNEL Scheme.

Cloning of metadata objects such as document and table part types is detailed in the Metadata cloning
section.

© 2018 Ultimate 69

ULTRAATE

Developer SOLIn

For ease of use, properties of a document type in the document structure edit form are grouped in tabs:

[Ep saleDocument, 4111 = B
B Document types: [2 | sSQlscript ©F Class code 5 Eventscript | [F# oK Save Cancel
Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands
= i Set | +
Mame Sale & Tcon B(¥ o up roles
Class name SaleDocument W @ E=cli] fan [[EneE
Large icon == * Role: demo -
Caption Sales en Lé - i v Role: msapaev =
Guid 19e78552-a9e9-4cad-8727-3ecfaFarfo & & w Subtype: Canceled
Hot ke Ctrl Alt Shift v X9, Read T
Cloneable | Check this box to enable Clone command Y =
Metadata tags Create
Database Update 4
Table name D_SALES a Delete i
v Subtype: Draft
Map object name |VD_SALES a
Developer comments edit user help Read v
Logged Check this box to enable logging Create i
Update v
Delete 4 -

The class name of the document type and its ID are displayed in the form heading.

In addition to the document type ID (assighed automatically), the toolbar includes the following
buttons:
S SQL script — an SQL script designed to create document type objects in the database:

Order = B
Create SQL | Alter SGQL
1 | CREATE TABLE D ORDER -
201
3 ID WUMBER(18) NCT NULL,
4 DOCTYPE OBJ_ID NUMBER(18) NOT NULL,
5 SUBTYPE_OBJ_ID NUMBER(13) NOT NULL,
& CEEATCR_ID NUMBER(12) NOT NULL, -
€ 1 3
Close

= "Create SQL" tab contains a script used for creating document type objects in the database. The
script can be used if the object is created in the database for the first time;
= "Alter SQL" contains a script used for changing document type objects previously created in the
database;
= the toolbar buttons in the upper part of the form allow:
= |* — execute the current script in the database,
= L} — copy the current script to the clipboard,
= H — save the current script on the computer.
% Class code — a class describing the document type will be generated in C#;
LT Event script — document event handler script. When creating a new document type, an event
handler is not created. The system will suggest to create the handler when click the button for the first
time. In the process, all changes made to the object will be saved:

Attention! @

Event script doesn't exist, Create a new one?
! . Mote: this will save all changes.

oK l ’ Cancel

© 2018 Ultimate 70

ULTRAATE

Developer SOLIn

The document event handler script can also be opened via the context menu of the document types
list form.

[7# — the button to open the list form of documents of the type being edited (the function is available
only for existing document types). The document register can also be opened via the context menu
(Browse documents... item) of the document types list form.

N Main properties of adocument type are arranged in the "Main" tab:
e Name — document type name. The name must correspond to the name of one document and be in
singular). In the example above, this name is Order. If necessary, can be changed:

Warning [ﬂ_ﬁy

Renaming this object will result in cascading update of many other
! % objects referencing it. 5aving the modified object will take a lot of time,
and certain references will not be updated automatically. Proceed with

Mame |ObjectName & | = = A
renaming?

= = = Name |Objectilame|

[QK] | Cancel |

" .

e Class name — document type class name. Generated automatically on the basis of the Name of the
document type;

e Caption — document type name displayed in screen forms (e. g., in document registers). Generated
automatically on the basis of the Name of the document type by dividing it into separate words in
plural number. For example, for the CashPayment type, the property will be named as Cash
payments;

e Guid — used to identify a menuitem.

Guid is generated automatically at random and, if necessary (in case of coincidence with Guid of
another object), can be changed:

Guid | 33c0lade-e476-4825-9cd9-d5f363a7a372 & | = = P |33c01ade-2476-9825-0cd9-05f363a7a372 4| = = - | 782790ff-0322-4d13-820a-1af0993925b8 ©

e Cloneable — the check box enabling the system command to clone a document (in case of
dictionaries, cloning is always enabled; for documents, an explicit permission is required).
e Database group of properties — names of document type objects in the database application scheme:
= Table name — name of document type table;
= Map object name — name of object for mapping LINQ queries. By default, this is the name of view
being generated.
= [ogged — determines if the logging of this document type is enabled. When this flag is checked, the
generated document script includes the calls to the PACK_LOG package enabling the logging of the
chosen document properties. The default value is true (checked).
Database object names are generated automatically and can be changed, if necessary:

D_ORDER al ==p D_ORDER| 23

Name may include Latin letters, numbers and "_" (underskernel character) only. It must begin with a
letter and cannot be longer than 30 characters (number of characters left for entering is displayed in
the control);

e /con — a standard icon 16x16 pix.
Icons can be found, e. g., in the main menu or in the window caption of a list form and a dictionary edit
form.
The buttons to the right of icon preview area allow:
" —loading anicon;
—saving anicon previously downloaded to the computer;
25— deleting anicon;

e Large icon — alarge icon (32x32 pix);

© 2018 Ultimate 71

ULTRAATE

Developer SOLIn

e Hot key — shortcut keys to call a command to open the list form of documents of this type. Using the
flags, one or several functional keys (Ctrl, Alt and Shift) can be selected; a symbol key can be selected
in the control element to the right of them.

The buttons of a control element for selecting a symbol allow:
T —select a symbol;

|-delete avalue selected;

&,/ —view, if such shortcut keys occur for any other command:

e Metadata tags — tags used for description of functions of a document type. Used for searching
objects implemented for a particular functional that is associated with this tag.

A tag can be added by using the keys |Space or Enter. To delete a tag, use the button % after the tag.
Since space is used for entering a tag, it can be replaced by either symbol “_” or “-“in tags consisting of
multiple words;

e Developer comments — a comment by an application programmer;

e edit user help — a comment to an object that the end user can see as a drop-down hint when hovering
the pointer over the object. The commentis entered in all system languages;

e Setup roles — list of roles for a draft setup of document rights. The rights are arranged in subtypes;
each operation is supplied with flags Allow and Revoke, which allow or revoke access to a particular
subtype respectively. The list of roles allows checking if there are any rights to work with the
document granted to someone.

" oo

M In"Properties" tab, on the left, there is a list of the document (header) properties; the parameters of
a property selected to the left are shown in the center; on the right, there is a list of document
properties Lookup properties, which are displayed in the drop-down list of the controls:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

9, Hide system Name AgentlD Lockup properties - a,
System name | Caption DB Mame Type Nou.. Caption Agent identity en System name Caption.ru Caption.en
D D ong v - i
DB name AGENT_ID a b|D Koa ST
W CreationDate CospaH Created
7 Type Long — NUMBER (18} - 3 5
TransactionDate MpoeBeaeH Transaction date
v | Not null | Refel ¥ L d
ot Ererence 90 SubType.Name MoaTun Subtype
v =
= = Default expr. AgentlD KnueHT, Koa Clientid
7 Reference Agent.Name Knmest Client
7 Mame Agent StorelD Cxnan, ko Store id
Caption Agent en Store.Name Crnag Store
Amount CyMma Amount
) dictionary document
otalsList otals lis .) String(256 Comments KommenTapim Comments
AgentID Agentidentity ~ AGENT_ID Long (Agents)... [¥ Dictionary 3715 | = -] Agent -
StorelD Store identity STORE_ID Long (Stores) ... [V
Amount Amount AMOUNT Dedmal not null v Metadats tags
FirmID Firm identity FIRM_ID Long {Firms) n... |[&
RowsCount Rows count ROWS_COUNT Long not null v
ArticdesQu... Articles quantity ARTICLES_QU... Long notnull v Developer comments edit user help
Weight Weight WEIGHT Dedmal not null v
Volume: Volume VOLUME Dedmal notrull (W]

Properties can be added © or deleted & by the corresponding buttons in the tab's toolbar. Properties
can also be filtered by Name. By default, the system properties that are specific to all document types
and created automatically will not be displayed (Hide system flag).

Each property has:

e Name — name;

e Caption — name displayed in screen forms. Generated automatically by dividing the Name into
separate words;

e DB name — name of a corresponding table field of the document type in the database application
scheme. The name is generated automatically. If necessary, it can be changed the same way as the
names of document type objects in the database. The field name is subject to the same limitations as
the names of other database objects;l

© 2018 Ultimate 72

ULTRAATE

Developer SOLIn

Type — property type (for details, see Property types). Depending on a type, a number of specific
parameters is available:
= Reference group of properties (available for Jong type of data marked with the Reference flag):
= Name — name of reference;
= Caption — caption for reference. Generated automatically by dividing the reference's Name into
separate words;
= Type — reference type: dictionary or document;
= Dictionary/Document — dictionary or document type that the property points to;
® Max size (available for Text and String types) limits the size of a property value by the amount
specified;
= Multilanguage (available for LargeText, Text and String types) — indicates that the property is multi-
language;
Not null — indicates if the property is mandatory;
Reference (available for long type) — indicates that the property is a reference to a dictionary or a
document;
Logged — specifies if logging of this property should be enabled (if logging is enabled for the given
document type);
Default expr. — a C# expression that forms a default property value. The expression value is
automatically inserted to the property during the creation of a new document of this type.
E.g., itis possible to display an information message as a value of the property of the Text type:
"Enter as a value for this field the current date in the format YYYY-MM-DD, where YYYY is
the year, MM is the month, DD is the day"
Or you can display the current date at once; to do this, enter as the value of the Default expr.
parameter the following expression:
DateTime.Now.ToString("yyyy-MM-dd HH-mm-ss™)

Metadata tags — tags used to describe the properties functionality. Bear the same meaning as the
document type tags;

Developer comments — a comment by an application programmer;

edit user help — a comment to an object that the end user can see as a drop-down hint when hovering
the pointer over the object. The commentis entered in all system languages;

Inthe Lookup properties list, there is a list of properties displayed in the drop-down list of the controls.
If this list is empty, all document properties will be displayed. Lookup properties can be added or
deleted & with the help of the corresponding button in the toolbar; they can also be filtered by Name.

The Lookup properties list may include both properties of the

Lookup properties = o}
document itself and properties of the dictionaries that the : :

. Mame Caption.ru Caption.en
given document points to via properties-links. In the example =, _ e — Buyer
above, such properties are OrderDate of the document type OrderDate Jlata saasa Order date
Order, and Name of the dictionaries Agent, DocumentType and | |DocumeniType.Name Tun noxymera Document type

DocumentSubtype displayed in the format Dictionary
name.Property name.

b+ | DocumentSubtype.Mame Mogtwn gokyedta Document subtype

Names of the properties are shown in the list column Name; Caption columns contain their localized
names that are to be displayed in screen forms (controls) for each system language.

© 2018 Ultimate

73

Developer

ULTRAATE

SOLID

A Inthe "Table parts" tab to the left, there is a list of table parts of the document type; on the right, all

parameters of the table part selected to the left:

(b saleDocument, 4111 o B R
« Document types: 4111 [z & | 2 SOLscript 9F Class code &} Event script |_—',z oK Save Cancel
Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands
ol - Mame Artides
System name Caption Table part identity Iz cloneable Caption Artides &n
Articles Artices SaleArtide, Sale artides o o I a I a
T: t SaleArticle, 5 1i v L
Delivery Delivery Delivery, Deliveries able part type | SaleArticle, Sale articies
ArticleBarcodes Article bar codes Barcode, Barcodes ¥ Cloneable | Checked table parts will be doned when the document is doned
ArticleCeds Article cods ArticleCed, Artide cods o
ExdudedArtic... Exduded artides ExdudedArtide, Exdu... Metadata tags
DeliveryWizard Delivery wizard — DeliveryWizard, Deliv...
DistribPerson... Personal bonus... PersonalBonus, Perso... V¥
Developer comments

Table parts can be added

Each table part has:
e Name — name;

or deleted & with the help of the corresponding buttons in the tab's
toolbar. Table parts can also be filtered by Name.

e Caption — name displayed in screen forms. Generated automatically by dividing the Name into

separate words;

e Table part identity — table part per se, the edit form of which is opened by clicking the button £ in

the control;

e /s cloneable — indicates that the table part contents will be copied during the cloning. The flag is
available only if the cloning of the given document type is allowed by the flag Cloneable in the Main

tab.

e Metadata tags — tags used for description of the table part functionality.
e Developer comments — comments by an application programmer.

Before adding a table part to a document type, it must be created (see Table parts). The table part added
will be available in the document edit form of this type in a separate tab bearing a name that

corresponds with the Localized name property:

r), 2/26/2013 2:46:03 PM

E
[

£ = B =
« L Order 14 Date |26.02.2013 14:46:03 | = | Balance |Main - en & v~
List of purchases
Buyer | FED
Crder date 26.02.2013 - e & -
Delivery address Tt — Cost

Comments:

© 2018 Ultimate

74

ULTRAATE

Developer SOLIn

A Inthe "Subtypes" tab, there is a list of document subtypes; on the right, all parameters of the subtype
selected to the left:

Main | Properties | Table parts | Subtypes | Tramsactions | Record list print forms | Record list commands

Q Mame | Crder | Initial subtype
Identity |System name Caption Initial subtype Caption | Order en
Order 7 Metadata tags Developer comments comments
1933 Reserve Reserve W

1934 PaymeniExpectation Payment expectation

1935 SetAtAWarehouse Set ata warehouse

1936 ReadyToDelivery Ready to delivery Document print forms Document commands
1937 Delivered Delivered

Print form Document command

» 6938, Difference act

Subtypes can be added &} or deleted & with the help of the corresponding buttons in the tab's toolbar.
Subtypes can also be filtered by Name (System name).

Each subtype has:

e Name — system name. When saving a subtype, a constant with the same name is generated for each
subtype;

e |nitial subtype — initial document subtype. When creating a new document, the user will be offered a
subtype for the document among the subtypes checked with this flag. If only one initial subtype is
specified, itis selected automatically during the creation of a new document.

LT] There is no way to directly select and change a subtype in the document edit form. Also, one
= cannot save a document having no subtype selected. Therefore, if no initial subtype is
determined for the document type for some reason, it is necessary to select a subtype in the
handler before creating the document.

e Caption — name displayed in screen forms. Generated automatically by dividing the subtype's Name
into separate words;

e comments — a comment to an object that the end user can see as a drop-down hint when hovering
the mouse pointer over the object;

e Metadata tags — tags used for description of the document subtype functionality;

e Developer comments — comments by an application programmer.

e Document print forms — list of print forms used for the given document subtype.
Print forms can be added &* or deleted & with the help of the corresponding buttons in the control's
toolbar. When adding, a list form of print forms will open, where one can select existing print forms or
create new ones. When deleting a print form, it will be deleted only from the list of print forms; it will
remain in the print forms dictionary. Print forms assigned to a subtype from the print forms edit form
will be automatically displayed in this list.
A print form can be opened in the edit form by double left-click on itin the list;

e Document commands — list of commands available for the given document subtype.
Commands can be added ¥ or deleted & with the help of the corresponding buttons in the control's
toolbar. When adding, a list form of commands will open, where one can select existing commands or
create new ones. When deleting a command, it will be deleted only from the list of subtype's
commands; it will remain in the commands dictionary. Commands added for a particular subtype via
the commands edit form will be automatically displayed in this list.
A command can be opened in the edit form by double left-click on it in the list.

© 2018 Ultimate 75

ULTRAATE

Developer SOLIn

A In the "Transactions" tab, a list of transaction scripts of the given document type is located; these
scripts from transactions in totals:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

Document subtype Preview: transactions by subtypes
Order v |x v [£] order
L} creating the debt of the customer
Check transaction scripts Add a new script LJ receipt of payment from the customer
o > Reserve
| receipt of payment from the customer Payment expectation
reservation of goods at a warshouse Set at a warehouse
transfer of goods to the customer > Ready to delivery
Delivered

For each subtype, it is needed to specify which transaction scripts will be executed while saving the
document. Scripts are selected from the common list of scripts tied to the given type.

The tab is divided into two parts:

e the left part includes the Document subtype drop-down list, at the top of which the document
subtypes are specified. At the bottom of the Check transaction scripts list, there are all available
transaction scripts specified; those checked with flags will be executed while saving the document in
a subtype selected in the Document subtype list.
= to add new transaction scripts, click the link Add a new script:

Mew transaction script o B OER

Display name ||

OK Cancel

Scripts are created after the document type has been saved; after that, the scripts become available
for editing.

= to rename a script, left-click on its name;

= to open ascriptin the edit form, click the button ***| to the right of its name;

= to delete a script, click the button ¥ to the right of its name. At the same time, the script must not
be tied to any document subtype;

e at the tab's right part (Preview), one can see a tree structure for all document subtypes and transaction
scripts associated with them. Names of subtypes with no transaction script tied to are shown in gray.
Click left mouse button on the name of a newly-created script in Preview area will open the script edit
form.

A Inthe "Record list print forms" tab, there is a list of print forms that are available from the list form of
documents of such type:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

Print farm
b | 1266, TestPrintForm, XA

Print forms can be added or deleted & with the help of the corresponding buttons in the tab's
toolbar. When adding, a list form of print forms will open, where one can select existing print forms or
create new ones. When deleting a print form, it will be deleted only from the list of document's print
forms; it will remain in the print forms dictionary. Print forms assigned to a subtype from the print forms
edit form will be automatically displayed in this list.

A print form can be opened in the edit form by double left-click on it in the list.

© 2018 Ultimate 76

ULTRAATE

Developer SOLIn

A Inthe "Record list commands" tab, there is a list of commands that are available from the list form of
documents of such type:

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

Document list command

¥ | 21768, Send e-mail to customers from selected orders

Commands can be added or deleted & with the help of the corresponding buttons in the tab's
toolbar. When adding, a list form of commands will open, where one can select existing commands or
create new ones. When deleting a command, it will be deleted only from the list of subtype's
commands; it will remain in the commands dictionary. A command can be opened in the edit form by
double left-click on itin the list. Commands added for a particular subtype via the commands edit form
will be automatically displayed in this list.

A command can be opened in the edit form by double left-click on it in the list.

Document class

During creation of each document type, a class of this document is generated. The initial name is
represented with document type name (Name) +"Document", and the list of its properties is
represented with corresponding properties of the document type.

For example, let us consider creation of simple document type DocType with its properties Agent/D and
Amount.

The model class of the subject area, generated according to this description, looks like as follows:
public partial class DocTypeDocument : IDocument

{
public long AgentID { get; set; }
public decimal Amount { get; set; }

// System properties created automatically for all types of the documents.
public bool Deleted { get; set; }

public long ID { get; set; }

public long CreatorID { get; set; }

public string Comments { get; set; }

public string TotalslList { get; set; }

public long TypeID { get; set; }

public long SubtypeID { get; set; }

public long Version { get; set; }

public string Description { get; set; }
public DateTime CreationDate { get; set; }
public DateTime TransactionDate { get; set; }

}

All classes of the documents implement IDocument interface. Therefore, a list of all classes of
documents can be obtained by requesting who implements this interface:

public interface IDocument : IEntity, IBusinessObject
{

long TypeID { get; set; }

long SubtypeID { get; set; }

long CreatorID { get; set; }

DateTime CreationDate { get; set; }

DateTime TransactionDate { get; set; }

string Description { get; set; }

© 2018 Ultimate 77

ULTRAATE

Developer SOLIn

string Comments { get; set; }
string TotalslList { get; set; }
bool Deleted { get; set; }

long Version { get; set; }

// Returns the table parts of the document.
IKeyValueStore<string, ITablePart> TableParts { get; }

}

Each document property corresponds the field of EditableValue<T> type, where T is one of the types
indicated in metadata. A collection of type DctionaryTable<T> may also correspond to the property
(where T—is atype of collection element).

Example of use:

[Import]
private IDocumentManager DocumentManager { get; set; }

// Get the document.
var document = DocumentManager<DocTypeDocument>.GetDocument (1488);

// Get the values of document AgentID property.
var agentId = document.AgentID;

// Get the table part of the document.
var tablePart = document.TablePartName;

Table parts

ﬁ Viewing existing and creating new table parts can be made in the dictionary of table parts Table
part types:

[Table part types = B
e 3 & Q|| i = < Filters &
System name Localized name Databasze table name

Identity

 Order Order TP_ORDER
2130 TestTP Test table part TP_TEST TP

The dictionary records can be filtered by the table part Name.

Arrangement of storage for the structure of table parts at the database level is detailed in the section
Documents in the chapter KERNEL scheme.

Cloning of metadata objects such as document and table part types is detailed in the Metadata cloning
section.

© 2018 Ultimate 78

ULTRAATE

Developer SOLIn

The form for editing of the table part structure contains only two tabs "Main" and "Properties":

[PurchaseArtideTablePartRow, 6784 = EBEOE

*[Table part types: 6784] nofiles = en 3 SQL script % Class code QK Save - Cancel
Main | Properties

Mame PurchaseArtideTablePartRow [} Icon £ P

Class name PurchaseArticleTablePartRow Metadata tags

Caption Purchase articdes en

Database Developer comments edit uzer help

Table name TP_PURCHASE_ARTICLES &

Mapping object |VTP_PURCHASE _ARTICLES a

Soft deletion Mark rows as deleted instead of actually deleting them

Logged o| Chedk this box to enable logging

The table part class name and its ID are displayed in the form heading.

With the set flag Soft deletion (Database property group) the table part rows will not be physically
removed from the existing table, but will be marked as removed. Activation of this flag will result into
the growth of the number of rows in the table, however it facilitates the search over revision history to a
great extent. Soft deletion is used generally for table parts of the documents, which content is entered
manually by the user. Soft deletion is not recommended to use for table parts of the documents filled in
automatically.

Using 93 SQL script button, you can view SQL script for creation or change of the objects of DBMS table
part.

Using £F Class code button, you can view the class generated in C#, describing the table part row.

Tab "Properties" allows enumeration of the table part fields similarly to the fields of document head.
Multilanguage feature is not supported for the table parts.

The table part is assigned to the document in the form for editing of the document type in the tab "Table
parts".

Class of table part record

During creation of each table part, a class of table part record is generated. Its initial description is
represented with table part name (Name) +"TablePartRow", and the list of its properties is represented
with corresponding properties of the table part.

For example, let us consider creation of simple table partDocumentName with ArticlelD and Amount
properties.

The model class of the subject area, generated according to this description, looks like as follows:
public partial class DocumentNameTablePartRow : ITablePartRecord,

{
public long ArticleID { get; set; }
public decimal Amount { get; set; }

// System properties created automatically for all types of the documents.
public long ID { get; set; }

public long DocumentID { get; set; }

public long TablePartEntryID { get; set; }

public bool Checked { get; set; }

public DateTime TransactionDate { get; set; }

© 2018 Ultimate 79

ULTRAATE

Developer SOLIn

public bool Deleted { get; set; }
public bool DocumentDeleted { get; set; }

}

All classes of records of the link tables implement the interface ITablePartRecord. Therefore, a list of all
classes of records of the link tables, can be obtained by requesting who implements this interface:

public interface ITablePartRecord : IEntity, IBusinessObject

{
long DocumentID { get; set; }

DateTime TransactionDate { get; set; }
bool DocumentDeleted { get; set; }
bool Deleted { get; set; }

long TablePartEntryID { get; set; }
bool Checked { get; set; }

}

The field of type EditableValue<T> corresponds to each property of table part record, where T is one of
types indicated in metadata:

Example of use:

[Import]
private ITableSourse DataContext { get; set; }

var documentId = 100500;
var deleted = 9;

var query =
from tablepart in DataContext.GetTable<DocumentNameTablePartRow>()
where tablepart.DocumentID == documentId &&
tablepart.Deleted == deleted
select tablepart;

return query.ToDictionary(
tablepart => tablepart.ArticleID, tablepart => tablepart.Amount);

Totals

[E|E| You can view the existing and create new totals in the Totals dictionary:

il Totals = B =
@ [# Q|| i = < Filters i
Localized name BaseTableMName
Stock STOCK
AgentProducts Agent products AGENT_PRODUCTS
5672 BankAccount Bank accounts BAMK_ACCOUNTS

The dictionary records can be filtered by Name of Totals (Name).

Arrangement of storage for the structure of totals at the database level is detailed in the section Totals
in the chapter KERNEL scheme.

Cloning of metadata objects such as dictionaries, link tables, and totals is detailed in the Metadata
cloning section.

© 2018 Ultimate 80

ULTRAATE

Developer SOLIn

Properties of Total in structure editing form grouped by tabs for convenience:

Stock, 4242 o B s
il

e SO script EF Class code SF Eventscript €7 Validation script E} oK Save - Cancel

+B

Main | Dimensions and variables | Report views

Name Stock & Icon ¥ B
Transaction dass name StockTransaction]
Balance dass name StockBalance Large icon i
Detailed transaction dass name |StodkDetailedTransaction &b
Caption Stocks en Metadata tags

Guid £4635c91-2c83-4cf0-92f3-e3fbecef2118d]

Options

Base DB name STOCKS & Developer comments edit user help
Total driver 7478 |~ |---||Stock o

Double entry | Every business transaction involves two totals

Storage options Show advanced database options

The Total class name and its ID are displayed in the form title.

The following buttons exist in the form tool panel besides total ID (automatically set):
St SQL script is script for using in any application for work with report data base, supporting SQL (PL
SQL Developer, TOAD etc.) for creation Totals object in following data base:

A stock — SQL saript = @R

> O B8

Create SQL | Alter SQL
1| -- Temporary table ~
2 | CREATE GLOBAL TEMPORARY TABLE TM_STOCK

(

L

DOCUMENT_ID NWUMBER(18) NOT NULL,

TRANSACTION_DATE DATE NOT NULL,

DELTA_NO NUMBER(128) NOT NULL,

DELTA_SUB_MO NUMBER(12) DEFAULT & NOT NULL,

LOT_MNO NUMBER DEFAULT & NOT NULL,

SCRIPT_ID MWUMBER(13) NOT NULL, v
< >

Script result

= Script for creation Total objects in data base is located in the “Create SQL” tab. This script can be
used if the object creates in SQL firstly;
= Script for deleting the Total objects in data base is located in the tab “Alter SQL”.
= Buttons on the panel on the top side of form allow:
» ¥ - do current script in data base,
= LV - copy current scrip to exchange buffer,
= H - save current scri pt to the file on disc.

[v s I I R I)

| ' I Script which is used for change created total objects in data base, is not generate by system.
| |

The reason is deficiency of secure total change technique on operating configuration.
Change of total is possible only at the stage of implementation by deleting tables and
recreating them. After implementation you can only create a new total and replace the old.
For reporting purses data of two totals co-operate by creating user report virtual total.

¥ Class code —class, which describes the total generated in C#;

© 2018 Ultimate 81

ULTRAATE

Developer SOLIn

LEF Event script — script of total events handler . During creation of a new total, the events handler is
not created. The system offers to create it when the button firstly pressed. All changes will be saved
in this case.

P '\
Attention! &J

Event script doesn't exist, Create a new one?
l % Note: this will save all changes.

[oK l | Cancel |

% validation script — script transaction validator. During creation of new total, the validator script is
not created. The system offers to create it whet the button held firstly. All changes will be saved in
this case.

[l - button of opening editing total report parameters form (functional operates only for created
totals).

A Inthe tab “Main” main total properties are organized:
e Name — total name. It must accord to the name of one total motion (must be in the singular). In the
example below it is the total name rummage on stock — Stock. If necessary, it can be changed:

(Warning [ﬂ_:hr

Renaming this object will result in cascading update of many other
l % ohbjects referencing it Saving the medified object will take a lot of time,
and certain references will not be updated automatically. Proceed with

- Name |ObjectMame|
renaming? > ! !

Mame |ObjectName & | ==

[QK] | Cancel |

e Transaction class name —total transaction class name Is generating automatically based on Name total

e Balance class name —total balanse class name Is generating automatically based on Name total ;

e Detailed transaction class name — total detalised transaction class name Is generating automatically
based on Name total ;

e Caption — total name which displayed on screen forms (for example, report parameters form) Is
generating automatically based on Name total ; For example, for total with name BankAccount this
property will has the value Bank accounts;

e Guid—is used to identify a menuitem.

Guid is generated automatically at random and, if necessary, (in case of coincidence with Guid of
another object) can be changed:

Guid |33c01ade-e476-4825-9cd9-d5f363a7a372 & | = = P |33c0lade-e475-4825-9cd9-d5f363a7a372 4| = = P | 78e700ff-03e2-4d13-820a-1af0993929b8 | 4

e Base DB name —is basic name of total object in application scheme the data base. On it base names of
other objects - tables and presentations - create by adding prefix Basic name is generated
automatically on the base of name Name of total and can be changed in case of necessity:

STOCK a%- = |sTOCK| 25

Name can contain only Latin letters, figures and sign “_”. The name must begin with a letter and the
length can’t be more than 30 symbols (available amount of symbols are shown on control element);

e Total driver—total driver

e Double entry —flag of double record which use for balanse total If the flag set the rule of double entry

will be applied in case any changes.

© 2018 Ultimate 82

ULTRAATE

Developer SOLIn

The double entry rule means that amount in column Amount of totals of two transactions (or wire)
must be is equl to zero. So the balance of all column total Amount always is equal to zero. The rule can
be check in two places:

= While saving operation transactions during document saving;

= While saving calculated transactions after handling by total driver.

Mistake in total driver can cause divergence of transactions balance amounts. In this case calculations
ends, and comply message is recorded to the server log;

e Use trigger-based balance table — flag shows the necessity of balance tables using (TB_ and TT_
accordingly for operating and analytic parts). In case the flag isn’t set, the total balance tables will not
be created. This option is only displayed when the Show advanced database options link is clicked.
Balance tables — one of the main reason for deadlocks while document running. However, refusal
from balance table greatly increases the time for making report, if the user query incoming and
outgoing variable values. Besides it, many of totals need the control of total values. For example,
rummage on stock have limitations ate the balance table, which prevent decrease the goods amount
below zero. The good candidate for total which can be used without balance tables is realization total.
The user usually interested in the period total (without incoming and outgoing values);

e Jcon —standard icon (with the size of 16 x 16 pixels).

Icons are shown, for example, on the main menu or at the list form title name and dictionary editing
form.

The buttons to the right of icon preview area allow:

|~ —loading the icon;

—saving the icon previously downloaded to the computer;

26 —deleting the icon;

e Large icon —alarge icon (with the size of 32 x 32 pixels);

e Metadata tags —tags used to describe total functionality; Used for searching the objects implemented
for certain functionality associated with such tag.

The tag is added by keys |Space| or [Enter. deleted —by button ¥ after the tag. As the space is used for
tag entering you can replace by signs “ " or “-” in tags with the name of several words;

e Edit user help — comment to the object which the end user can see in the form of a hint which drops
down after mouseover. The comment is entered for any language of the system;

e Developer comments —comments of the application developer;

M On the top of the lap “Dimensions and variables” can be found the total dimensions list Dimensions
and on the bottom is situated the list of variables Variables. On the left side of each list is situated the
properties list (dimensions and variables), on the right side - all parameters of the property selected
from left:

Main | Dimensions and variables | Report views

Dimensions

a, Dimension name | StorelD Tags
Mame Caption Dictionary Flags | Operational Informational Pivot dimension
b | StorelD Staore Store Caption Store en
ArticleID Artidle iden... Artice Column name STORE 1D a | Developer comments
AgentID Agent Agent
IncomeDoc... Income do... Document ©) dictionary document
Dictionary 3637 |~ |-+ | Store £
Variables
a, Mame Quantity Tags
MName Flags | Operational
b | Quantity Caption Quantity en
Amount Column name | QUANTITY @ Developer comments

© 2018 Ultimate 83

ULTRAATE

Developer SOLIn

The dimensions and variables can be added or removed & using corresponding buttons in the
toolbar: They also can be filtered by the name (Name).

Each dimension has:

e Dimension name —the name which automatically acquires end ID;

e Operational — a flag indicating if the dimension is operational. In case the flag is set, the value of
operational dimension will be formed in the result of the work of transaction scripts while saving
documents. In case the flag isn’t set, the value of (analytic) dimension will be calculated by total
driver;

e Caption — a name displayed in the screen forms; It is generated automatically on the base of the
dimension name Name by dividing into words;

e Column name- the name of corresponding field in total tables in application scheme of data base . The
name is generated automatically. It can be changed in the same way as the base name of total objects
in data base in case of necessity. Field name has the same limitations as the names of other data base
objects.

e Dictionary/Document - the dictionary or document, elements of which are the value of dimension;

e Tags —tags used for description of the property functionality. It is analogue in the meaning to total
tags;

e Developer comments —comments of application developer;

All total dimensions have the data type long, all variables —decimal.

Two variables are automatically created while new total creating Quantity (quantity) and Amount
(amount). They the most frequently used total dimensions. They can be deleted if they are no longer
needed.

Amount —reserved dimension name, used for the control of the double entry rule. Any total
= with the control of the double entry rule (set by flag Double entry) must have the column with
name Amount.

N The list of columns available on default is located in [an | bimensions and varisbles | Report views
the lap “Report view” and they used to form the column _
list during the creating of report.

View
Column lists can be added or removed & with |’ Basic report view
corresponding buttons in the toolbar.

|ﬁ| Total datais calculated regularly and automatically by activity "Total calculation".

Reports on the totals

There are three types of reports in the system:

e reports on the totals, which functionality is implemented completely with the kernel ;

e virtual totals, using which a report can be prepared on the consolidated data of several totals;
e userreports, implemented by the application developer.

© 2018 Ultimate 84

ULTRAATE

SOLID

The functionality of the reports implemented with system and available for the totals provides a user
with flexible mechanism of report data handling. The same functionality is used in the virtual totals and
user reports:

Developer

[F] Stock report from 12/1/2014 12:00:00 AM to 2/5/2015 11:53:59 FM o = sz

Transaction date.Quarter || Transaction date.Month || Transaction date - & | Excel export
Identity Mame Amount.In Amount. Add Amount.Sub Amount. Out

F|w 15,754,933.00 254,635.00 100,001.00 15,909,557.00
~ 2014.4 15,754,933.00 254,635.00 91,994.00 15,917,574.00
w 2014.12 15,754,933.00 254,635.00 91,994.00 15,917,574.00
1222014 12:00:00 AM 15,754,933.00 0.00 0.00 15,754,933.00
12/3/2014 12:00:00 AM 15,754,933.00 13,134.00 8,580.00 15,759,487.00
12/5/2014 12:00:00 AM 15,759,487.00 9,511.00 9,500.00 15,759,498.00
12/11/2014 12:00:00 AM 15,759,495.00 0.00 0,00 15,759,498.00
12/232014 12:00:00 AM 15,759,498.00 0.00 0.00 15,759,498.00
12/24/2014 12:00:00 AM 15,759,495.00 201,150.00 41,300.00 15,919,388.00
12/25/2014 12:00:00 AM 15,919,388.00 30,800.00 32,614.00 15,917,574.00
v 2015.1 15,917,574.00 0.00 §,007.00 15,909,567.00
w 2015.01 15,917,574.00 0.00 8,007.00 15,909,557.00
1/15/2015 12:00:00 AM 15,917,574.00 0.00 0.00 15,917,574.00
1/20/2015 12:00:00 AM 15,917,574.00 0.00 8,007.00 15,909,557.00

The total dimensions act as the objects Groups, according to which grouping of report data is carried out:

[3) stock report parameters 52
Period | 12/1/2014 v |12z:00am | 2| to 2/5/2015 ~|[11:58PM | 2| today, this week, last 7 days, lastmonth, this month, last 30 days Calculated up to 1/20/2015 7:38:19 PM and accurate up to 1/20/20157:38:19 PM ||/ Buid report... |
Report view Filter:
Groups mave up | move down Variables display all available sets porr
riide e
W| Transaction date.Quarter 40481, Amounts MRRE A
| Transaction date.Month # | amountIn Income document ~
V| Transaction date Amount.Add x
Amount.Sub Store -
v Transaction date + Amount.0ut
Day
Week o
Add column || # Reload defaults
Month
Quarter Caption Amount. Add
Year
Column type 3) Variable Expression
~ Document -
> Type Variable name Amount -
> Subtype _
3 Creator Variable type In Add
s Artde Out Sub Customize filter
> Income document Alizs Amount. Add > ¥ Artde
> |#| Income document
> Store EEE sas saes s -
Display format ~ |£55, 2 #2225 0.00 + & Store
Ronjevel e Text color 0, 128, 0 hd
Back col Window >
Non-zero turnovers Mon-zera balances e e neaw

The Column providers are used to create additional levels of details (grouping).

There are initially two Column providers in the system by default: documents and dictionaries:
e the provider of documents provides a possibility to detail the reports by the attributes of the very
documents Document and time periods Transaction Date;

e the provider of dictionaries provides a possibility to give additional details for the reports by the
values of properties-links of the dictionaries.

If this level of details is insufficient for some dictionary being the total dimension, own Column
providers can be created for it.

The total variables act as the objects Variables, using which the report columns are built (except for the
columns Identity and Name). The columns can be selected either with a set from preliminary built report
types, or formed independently.

© 2018 Ultimate 85

ULTRAATE

Developer SOLIn

Total transaction class

During creation of each total, three classes of total transaction are generated. Their initial description is
represented with the total name (Name) +"Transaction" for the total transaction class, +"Balance" for
the balance transaction class and +"DetailedTransaction" for the total detailed transaction class. The
initial description of the list of their properties is represented with corresponding dimensions and
variables of the total.

For example, let us consider creation of simple total TotalIName with dimension Dimension/D and
variable Variable.

The model class of the subject area, generated according to this description, looks like as follows:

// Total transaction class.
public partial class TotalNameTransaction : TransactionValue
{

public long DimensionID { get; set; }

public decimal Variable { get; set; }

}

// Total balance class.
public partial class TotalNameBalance : BalanceValue
{

public long DimensionID { get; set; }

public decimal Variable { get; set; }

}

// Total detailed transaction class.
public partial class TotalNameDetailedTransaction : DetailedTransactionValue
{

public long DimensionID { get; set; }

public decimal Variable { get; set; }

}

The classes of of totals’ transactions are inherited from the following base classes:
e the classes of totals' transactions are inherited from the class TransactionValue, which is inherited in
turn from the base class TransactionBase:

public abstract class TransactionValue : TransactionBase,
IEquatable<TransactionValue>, IComparable<TransactionValue>
{
public long DocumentID { get; set; }
public DateTime TransactionDate { get; set; }
public long DeltaNo { get; set; }
public long ScriptID { get; set; }
public long PairTotalID { get; set; }
public Document Document { get; set; }
public Total Script { get; set; }
public Total PairTotal { get; set; }

}
e the classes of totals' balances are inherited from the class TransactionValue, which is inherited in turn
from the base class TransactionBase:
public abstract class BalanceValue : TransactionBase, IEquatable<BalanceValue>

© 2018 Ultimate 86

ULTRAATE

Developer SOLIn

e the classes of totals' detailed transactions are inherited from the class DetailedTransactionValue,
which is inherited in turn from the base class TransactionBase:

public abstract class DetailedTransactionValue : TransactionValue,
IEquatable<DetailedTransactionValue>, IComparable<DetailedTransactionValue>
{

public long DeltaSubNo { get; set; }
public decimal LotNo { get; set; }

}

Each total transaction property corresponds to the field of EditableValue<T>type, where T is one of the
types indicated in metadata.

Example of use:
[Import]
private ITableSourse DataContext { get; set; }

var documentId = 100500;

var query =
from total in DataContext.GetTable<TotalNameTransaction>()
where total.DocumentID == documentId

select total;

return query.ToDictionary(
total => total.DimensionID, total => total.Variable);

Report types

=/ Report types serve to provide the opportunity for rapid choice of report column set while
parameters are change-settings.

The list of all column set can be found in the dictionary “Report views":

5] Report views = B 2
eF ¢ all & = [E e « Filters @

Identity « | MName

2 2301 Basic report view

© 2018 Ultimate 87

ULTRAATE

Developer SOLIn

The properties of column setin the editing form grouped on the following way for convenience:

F}é Report views, 43937 = = 2
+[E Report views: 43937 (] nofiles -~ en LJr & oK Save Cancel
Report view Totals | Custom reports | Virtual totals
Mame | Quantity Q = I EI
Variables | move down Total
Quantity.In Caption Quantity.In b | Claim states
gz::ggj Column type (@) Variable (7) Expression Stock barcodes
Quantity.Out variable name Quantity - Stock ceds
Variable type In [| Add
) Out ©) sub
Alias Quantity.In
Display format HEE FEE FEE FH0 -
Text color 0 e4, 0 b
Back color [1192, 255, 192 -
Show zeros i
Aggregate function | Sum -
Rowevel filter
Add Delete Non-zero turnovers Mon-zero balances 3(1)

Properties of report type is shown on the “Report type setting” group:

e Name - name;

e Report type column list is located on the left side of group, and properties of selected column is on
the right side. The order of column in the list (from up to down) accord to the order of it displaying in
the report on default (from left to right):

Variables display all available sets
40481, Amounts w e
Amount.In
Amount, Add *
Amount.Sub
Amount. Out
[E] stock report from 12/1/2014 12:00:00 AM to 2/5/2015 11:59:53 PM o @ R
Transactien date.Quarter || Transaction date.Month || Transaction date | -] I B | Excel export
Identity Mame Amount.In Amount.Add Amount. Sub Amount.Out
i Total 15,754,933.00 254,635.00 100,001.00 15,909,567.00
v 2014.4 15,754,933.00 254,5635.00 91,994.00 15,917,574.00
» 201412 15,754,933.00 254,635.00 91,994.00 15,917,574.00
12/2/2014 12:00:00 AM 15,754,933.00 0.00 0.00 15,754,933.00
12(3/2014 12:00:00 AM 15,754,933.00 13,134.00 8,580.00 15,759,487.00
12/5/2014 12:00:00 AM 15,759,487.00 9,511.00 9,500.00 15,759,498.00
12112014 12:00:00 AM 15,759,498.00 0.00 0.00 15,759,498.00
12/23/2014 12:00:00 AM 15,759,498.00 0.00 0.00 15,759,498.00
12242014 12:00:00 AM 15,759,498.00 201,190.00 41,300.00 15,919,388.00
12/25/2014 12:00:00 AM 15,919,388.00 30,300.00 32,614.00 15,917,574.00
v 2015.1 15,917,574.00 0.00 8,007.00 15,909,567.00
w 2015.01 15,917,574.00 0.00 8,007.00 15,909,567.00
1/15/2015 12:00:00 AM 15,917,574.00 0.00 0.00 15,917,574.00
1/20/2015 12:00:00 AM 15,917,574.00 0.00 8,007.00 15,909,567.00

= |inks up and down move selected column on the list level up or down consequently;
= The button Add adds new column to the list;
= The button Delete deletes selected column from list;

e Title - the name of list shown in report;

© 2018 Ultimate 88

ULTRAATE

Developer SOLIn

Type —column type :
= Variable —means that the mean can be taken from data;
= Expression —the value will be calculated in accordance with formula;
The following parameters are available for Variable column type :
= Variable name - the name of total variable, the value of which will be displayed in the column.
Variable name must coincide to the name of Variable of total ;
= Flags (mutex) which indicate variable values stated in the column:
= Starting balance;
» Ending balance;
® |[ncoming;
= outgoings;
= Alias - the column alias which is used in expressions (Expression column type). The left mouse
button click copies it to the exchange buffer;
The following parameters are available for Expression column type:
= Column name - the unique column name used for calculation of report data (alias analogue for
variable column type);
= Expression - expression which forms column value (described in detailed hereafter);
Format - format which shows values in column (type of all report columns Decimal). Format can be
selected from predefined by pressing '~ control element or write by user. Detailed description of
standard number format can be found on MSDN = eng/rus. Detailed description of customisable
number format can be found there =+ eng/rus;
Text color — column text color;
Background color — column background color;
Show zeroes — if the cell has 0 value and ticked the box O will be displayed, if the box is unticked - the
cell will be empty;
Aggregate function - the function which used for subtotal in report form on default.

In writing the expression forms column value is available following opportunities:

As expression of variable can be used alias Alias of column type Variable (of the same report type)
enclosed to square parenthesise:

[ColumnName] / 100
Result report table contains system variable GroupLevel—group level in report tree (the first lineTotal
has level 1), and GroupCount — total amount of levels on the tree, which can be used in creating the
expressions with ternary operator ?:
[GroupLevel] == [GroupCount] ? min([ColumnName]) : max([ColumnName])
Keeps the numbers with floating point — 1.5E5;
Keeps types —true, false;
Keeps system functions from System.Math namespace:
= Abs—absolute number value;
= Max —returns the larger of two numbers:
Max([ColumnNamel], [ColumName2])
= Min —returns the smaller of two numbers;
= Pow —returns the number raised to the stated power:
Pow([ColumnName], 2)
= Round —rounds off the number to the nearest whole number;
= Round —rounds the number to the stated number of divisional class:
max ([ColumnName])
= Sqrt—the square root of;
= The totallist of functions can be found at MSDN = eng/rus;

© 2018 Ultimate 89

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn.microsoft.com/ru-ru/library/dwhawy9k.aspx
http://msdn.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn.microsoft.com/ru-ru/library/0c899ak8.aspx
http://msdn.microsoft.com/en-us/library/system.math.aspx
http://msdn.microsoft.com/ru-ru/library/system.math.aspx

ULTRAATE

Developer SOLIn

e Supports additional functions:
= zdiv —secure division with stated result (third parameter), if the divisor is equal to zero:
zdiv([ColumnNamel], [ColumnName2], ©)

= Aggregate functions which calculate the value of lines in own group (on the branch of report tree):
* gvg — average value;
= count —total lines amount in the group;
" max —maximum value;
=" min— minimum value;
" sum—summary value.
sum([ColumnName])

M the totals enumerates in the “Totals” tab and this column set will be available on default in the
report parameters editing form. As every report columns set can be defined for several totals, so every
total can be defined for several column set. Totals in list can be added or removed & with
corresponding buttons in the panel.

Ml userreports enumerates in the “User reports” tab and this columns set will be available on default in

the parameters setting form. As every report columns set can be defined for several user reports, so
every user report can be defined for several column set. The user reports in list can be added or
removed & with corresponding buttons in the panel.

[Virtual totals enumerates in the “Virtual totals” tab and this columns set will be available on default
in the parameters setting form. As every report columns set can be defined by several virtual totals, so
every virtual total can be defined for several column set. Virtual totals in the list can be added or
removed & with corresponding buttons in the toolbar.

Metadata Validation

The forms for creation of metadata objects support validation of created objects. After mouseover at the
erroricon, a validator hint appears:

Main | Properties | Link tables | Lists | Commands | Print forms
C
Mame |

i
Class name T

Caption g!]_!

Guid f7dedags-e508-47a6-948e-2a650515686 Bl%cpﬁ't}" Caption (Caption) should have a value
Parent property - | X

Database

Table name a!-

Sequence name a

Mapping object é@

Lookup behavior
Display format | {ID}, {Name}

Search property - X

© 2018 Ultimate 90

ULTRAATE

Developer SOLIn

If the element displayed in the table contains an error, the erroricon is displayed directly in the table in
the row containing the element:

Main | Properties | Link tables | Lists | Commands | Print forms

i
bt Q Mame L
Mame Caption DB Mame Mot null | Type Caption Eﬂ_i
D Identity D 7 Lang not nu !
= DB name i
MAME ¥ String(256) not null
Long Type Long — MUMBER.(18) -

Mot null || Reference Filter

Default expr.

Metadata tags

Developer comments edit user help

Metadata Cloning

Cloning of the metadata objects helps creating new objects of the similar structure. Like with cloning of
the ordinary dictionaries and documents, an existing record is loaded and used as the template for the
new record displayed on the screen and presented to the user allowing to modify the object before
saving (rename, add comments, modify or add new properties, etc). The object is not saved to the
database until the user clicks the Save button:

| Barcode52072, 62072 [new record] = B

«[Dictionaries: §2072 oK Save Cancel

Main | Properties | Link tables | Lists | Commands | Print forms

MName Barcode62072 Motifications enabled Teon (90| B8 P4
Class name Barcodes 2072 Transparent translation >
Caption Barcodes en Cached Large icon ||_!!!||_!!|
Guid b73936a5-40b7-40a2-94a7-416 1 7fd4feet 1 Hot key Cirl Alt Shift *|X |9, N
Parent property - | X Metadata tags

Database

Table name BARCODES a

Seguence name |BARCODES_SEQ]

Mapping object | VBARCODES]

Logged | Check this box to enable logging

Lookup behavior

Display format | {Value} Developer comments edit user help

Search property - | X

Metadata objects define the structure of the application classes and data tables, so the metadata cloning
has its specifics:

¢ Cloned objects are given unique names (numeric suffix is automatically appended to the new object's
name) to make sure that class names don't conflict with the original objects;

© 2018 Ultimate 91

ULTRAATE

Developer SOLIn

e Inner objects and script references are cleaned up to make sure that the clones don't share their
internals with the original objects;

e Dictionary specifics:
o Event handler, editor event handler and report column provider scripts are deleted;

o Inner dictionaries are deleted (because they reference the original dictionary, not the clone
anyway);

o Innerlink tables are deleted (because they reference the original dictionary, too);
o Dictionary constants are deleted (because the new dictionary will have its own data).

e Document type specifics:
o Event handler, editor event handler and document transaction scripts are deleted,;

o Subtypes and table parts are deleted (because using the same table parts types in different
document types is strictly discouraged).

All other properties of the cloned objects, including the database table names, are kept as is. It is up to
the developer to make sure that the cloned object works as expected: the clone requires the same
debugging and testing cycle as any newly created metadata object.

Virtual totals

Virtual totals are a technical name of a financial statement mechanism. They allow combining data
of several totals and bringing them in one summary report. For a real user reports on totals and on
virtual totals look like exactly similar: the same opportunities of filtering, group, detailing, variables and
expressions selection. Unlike user reports having similar potential, virtual totals are much easier in
setup and are oriented on business analysts but not on programmers.

On the engineering side the virtual totals are a source of analytical data, similar to normal totals but
created on the fly according to the given rules. Reports on the virtual totals are built by means of the
standard mechanism of reporting, and rules of data collection are formulated in special language which
for anonexpert is easier to master, than SQL:

© 2018 Ultimate 92

ULTRAATE

Developer SOLIn

i virtual totals, 54410 o B R
[Virtual totals: 54410 en (22 £ | [g Runreport oK Save Cancel
Virtual total Text
Name Shoe Shiner &M 1 This is a sketch, just to demonstrate the new syntax

_ : 2
et s 3| // dimensions and variables
ILcon] g 4| dim AgentID (Agent): en(Agent), ru(KoHTpareHT)
-) 5| dim CostItemID (CostItem): en{CostItem), ru{CTaTeR)
o3 6 var Amount: en{Amount), ru(Cymma)
Large icon - 7
8| // calculated groups
& 9 group Income: en{Income), ru(Npwuxoa)
Metadata tags 18 var Amount
11 total Expense: -Amount
12 filter CostItemID: 188 with descendants
13 | end
14
15 | group Outcomez: en{Outcome), ru(Pacxon)
Dev. comments 16 var Amount
17 total Expense: -Amount
13 filter CostItemID: 81, 112 with descendants
19 | end
28
21
Message Line Column
» | Mo errors, 1 1

Finally data source for any virtual total are tables of normal totals. Data for off-balance totals are always
undertaken from operational tables, for totals with double record are usually from analytical.

Exact rule is: if in the virtual total all dimensions and variables (including involved in filters and
predicates) are operational, then for totals with double record data are undertaken from operational
tables. If at least one dimension or variable is analytical that data for all totals with double record are
undertaken from analytical tables. This rule guarantees mutual coherence of data with which the virtual
total operates.

The virtual total constructed according to operational tables always shows digits that are actual at the
time of the report calculation. If analytical tables are used in it, then its relevance depends on till what
moment the balance totals which are in its part are calculated. In typical cases the actual pointisin limits
of hour from the present situation.

Structure overview

The virtual total consists of the following elements:
e Dimension — as a usual total has, the reference to dictionaries or documents

Variables — as a usual total has, numerical data for summation (group)

Calculated groups — rules for summation of the data, obtained from several sources
o Sources-totals — rules for extraction of data from typical total
o Sources-groups — rules for extraction of data from other calculated groups

o Filters — expressions for allocation of a subset of the necessary data

Parent groups — rules for the organization of the calculated groups into the hierarchy

Predicates — external filters, which can not be formulated within language of virtual totals

© 2018 Ultimate 93

ULTRAATE

Developer SOLIn

Commands for reports calculation on them are automatically formed for all virtual totals in the system.
Commands names are formed on the basis of names of virtual totals and localized similar to the names
of totals and dictionaries.

Example: profits and losses

For complete description of virtual total it is enough to specify a list of dimensions, variables and
calculated groups (remaining components are optional). dimensions and variables have the same sense
that is in normal totals. Calculated groups are main mechanism that makes virtual totals by such
powerful analytical tool. It allows integrating and filter data from several totals or other calculated
groups in one line of the report. We will consider it on the most simplified sample of profit and loss
report.

A shoe polisher in hotel provides his simple services to guests and accepts arbitrary currency which he
changes for rubles at a current rate in an adjacent exchanger of currency as payment. The list of his
services is fixed: brushing with shoe-polish, washing by a rag in a bucket with water and processing of
footwear with a deodorant. Production costs: rent of the place in the hall, shoe-polish, a deodorant,
brushes and rags. To consider all this, there would be enough one Cost total for him if not fuss with
currency. For loss record because of currency exchange one more total will be required: Conversion.

Costs and Conversion can be integrated in one report using the virtual totals. And to separate incomes
from outcomes calculated groups are used:

e Calculated Income group: Cost total (we take only Shoe-polish, Washing, Odor removal articles)

e Calculated Outcome group: Cost total (Rent, Shoe-polish, Brushes, Rags, Deodorant articles) + total
Conversion

e Total: Profit group + Losses group

u Shoe Shiner repart from 9/1/2015 12:00:00 AM to 912015 11:55:53 PM e T 1 R
Group | Costltern = B | Excel export
Identity Mame Amount.In Amount+ Amount- Amount. Out
bvi Total 0.00 32.00 22,00 10.00
172 Income 0.00 32.00 0.00 32.00
173 Qutcome 0.00 0.00 22.00 -22.00

When our hypothetical shoe polisher is checked with his report on a brand new pad, he sees three lines:
Income. Outcome, Total. Besides, as much as detailed refining is available to him for all these lines —
whereof today’s profit specifically is combined, what outcomes were, how many services were

© 2018 Ultimate 94

Developer

ULTRAATE

SOLID

rendered, how many brushes are acquired and how much money is lost because of exchange difference

in case of exchange of dollars for rubles:

Shoe shiner report from 9/1/2015 12:00:00 AM to 9,/1/2015 11/59/59 PM = B ER
|Gr|:rup ||l:|:rstltem| = || Export to Excel
Identity Name Amount.In Amount+ Amount— Arnount, Out

e .. el 0,00 32,00 2200 10,00

w 172 Income 0,00 32,00 0,00 32,00

109 Shoe-polish, 0,00 17,00 0,00 17,00

110 Rag-wash 0,00 1,00 0,00 1,00

111 Deodorant 0,00 14,00 0,00 14,00

v 173 Outcome 0,00 0,00 27,00 -22,00

81 Exchange diffefence 0,00 0,00 4,00 4,00

113 Rent 0,00 0,00 10,00 -10,00

114 Shoe-polish, 0,00 0,00 5,00 -5,00

115 Brushes 0,00 0,00 3,00 -3,00

Reports on the virtual totals are completely localizable. The Russian-speaking user will see the same

report in Russian, English-speaking — in English:

Shoe Shiner repart from 9/1/2015 12:00:00 AM to 912015 11:55:53 PM

e T 1 R

| Group | Costltern

= || Excel export

Identity | Mame | Amount.In Amount+ | Amount- | Amount. Out
B v Total 0.00 32.00 22,00 10.00
] 172 Income 0.00 32.00 0.00 32.00
: 173 Qutcome 0,00 0,00 22.00 -22,00

Before passing to DSL language for description of virtual total, we will consider questions of localization

that further not to turn to them.

© 2018 Ultimate

95

ULTRAATE

Developer SOLIn

Localization

Virtual totals support localization as any objects of metadata. Report name is always displayed in
language of the end user, therefore during creation of a virtual total it is necessary to set the name in all
languages established in system:

iualioigl Property translations = = R
i en
Mame Shoe Shiner &N Pom— Text
Guid Ddfafesf-fe7b-4389-89a2-515bbaf | & b Pycoan TEm——
Lcon VL b English (translation is read-only) Shoe Shiner
Large icon
Ok
&b

Except the name, the virtual total contains other localized elements: dimensions, variables, groups. All
of them are described by means of DSL-language of the virtual totals, which will be discussed below.
Localized names are submitted everywhere by the list approximately of such state:

en(English caption), ru(Russian caption)

The text in brackets in this language is followed after two-letter identifier of language. During creation
of avirtual total it is automatically checked that the names in all languages are specified, supported by
the system at the moment, for all components.

It should be mentioned that dictionaries of dimensions of a virtual total are gotten into the report, and
also any dictionaries, to which you can reach from there on the references in a form of report
parameters:

» Transaction date Add column 2 Reload defaults
» Document)
» Group Caption Amount.In
» Agent Column type) Variable Expression
v iCostltem +
: i Variable name Amount -
» Parent group
Parent group, level 1 Variable type 2l In add
Parent group, level 2 Out Sub
Alias Amount.In

All necessary dictionaries have to be translated, and all translations have to be filled in order to localize
the report on a virtual total. Otherwise, there will be mash from different languages in the report. For
example, here how the report of the shoe polisher will look like if there are no translations in the
dictionary of articles of expenses:

© 2018 Ultimate 96

ULTRAATE

Developer SOLIn

@] Shoe shiner report from 9/1/2015 12:00:00 AM to 9/1/2015 11/59/59 PM = B EE
Group ||Costitem = B | Export to Excel
Identity Mame Amount.In Amount+ Amount— Amount. Out
bl i | Total 0,00 32,00 22,00 10,00
v 172 Mpuxog 0,00 32,00 0,00 32,00

109 Shoe-polish 0,00 17,00 0,00 17,00
110 Rag-wash 0,00 1,00 1,00
111 Deodorant 0,00 14,00 0,00 14,00
w 173 Pacxog 0,00 0,00 22,00 -22,00
81 Exchange diffefence 0,00 0,00 4,00 4,00
113 Rent 0,00 0,00 10,00 -10,00
114 Shoe-polish 0,00 0,00 5,00 5,00
115 Brushes 0,00 0,00 3,00 -3,00

Virtual total description language

We will be restricted to informal presentation of DSL language of the virtual totals. Provide completely
virtual total text mentioned in the last section and we will sort its components:

// dimensions and variables

dim AgentID (Agent): en(Agent), ru(Conragent)

dim CostItemID (CostItem): en(CostItem), ru(Article)
var Amount: en(Amount), ru(Amount)

// calculated groups
group Income: en(Income), ru(Income)
var Amount
total Expense: -Amount
filter CostItemID: 108 with descendants
end

group Outcome: en(Outcome), ru(Outcome)
var Amount
total Expense: -Amount
filter CostItemID: 81, 112 with descendants
total Convertation: Amount
value CostItemID: 81
end

First of all dimensions (dim) and variable (var) are described: at first an official name then a dictionary or
a document (only for dimensions) in brackets and, at last, localized names separated by a comma.
Variables and dimensions can be as much as necessary but most often four-five dimensions and one-
two variables are used in virtual totals in practice . If dimension of the virtual total refers to the
document, enter a document name with Document suffix:

dim IncomeDocumentID (PurchaseDocument): en(Income document), ru(Income document)

In the second section the calculated groups are described. In each group for each variable of virtual total
itis necessary to list data sources. Totals or other calculated groups can be data sources. It is possible to

© 2018 Ultimate 97

ULTRAATE

Developer SOLIn

superimpose a filter on data sources: so, in our example we can judge by cost article that it is necessary
to refer this or that schema to income or outcome.

Pay attention to the calculated Outcome group. Amount variable obtains data from two totals there:
from Cost and Conversion. dimensions of Cost total (AgentID, CostltemID) are automatically displayed
on virtual total dimensions of the same name. However, there is no these dimensions in the Conversion
total : in case of currency conversion no contractors and cost articles are involved. That the exchange
difference was shown as separate cost article in our report, it is obviously necessary to specify a cost
article code for all schemas according to the Conversion total. Display of value dimension is used for this
purpose:

value CostItemID: 81

There is one more situation when dimension display can be required: there is necessary dimension in
the total data source butitis called in a different way. Or there is no necessary dimension but there is a
dictionary referring to it. In these cases it is possible to use display of dimension to another dimension
(dim):

dim OfficelID: StorelID.OfficeID

In our simple virtual total there is no need for such displays.

Total sources, filters

We will consider a calculated group which takes data from one total:

group SampleGroup: en(Sample group), ru(Sample group)
var Quantity
total Stock: Quantity
end

Total source Stock is specified for a variable. How to describe the same calculated group if there are two
variables, Quantity and Amount in the virtual total? Specify data source for each variable of the virtual
total:

group SampleGroup: en(Sample group), ru(Sample group)
var Quantity
total Stock: Quantity
var Amount
total Stock: Amount
end

If data have areverse sign in a total source (for example, virtual total shows money on the client balance
using the client debt total), a variable sign can be changed:

group SampleGroup: en(Sample group), ru(Sample group)
var Quantity
total Stock: -Quantity
end

One more frequent situation is: one calculated group shall remove only write-off as the total, and
another — only charges. To select only charges at total variable it is possible to specify Add modifier (for
example, Quantity.Add) that to select only write-offs — Add Sub. Our report of the shoe polisher could
use this mechanism to separate profits from losses without being guided by cost articles. This filter can
be combined with change of a variable sign:

group SampleGroup: en(Sample group), ru(Sample group)

© 2018 Ultimate 98

ULTRAATE

Developer SOLIn

var QuantityAdd
total Stock: Quantity.Add
var QuantitySub
total Stock: -Quantity.Sub
end

Quite often the same total can be used for accounting of absolutely different things. For example, the
total - contractor Debts can be used in case of store inventory for written-off item record. Iltem amount
that are written off under inventory is hung up on the official contractor who is used only for these
purposes. When in the virtual total amount of the written-off item is required, we should use the total -
contractor Debts whereon our official contractor filter for write-off record will be superimposed.

In the elementary case such filter represents a record code list separated by a comma. For hierarchical
dictionaries there is an additional construction “with descendants” that means that record with all her
descendants will get to selection. Besides, the filter can be inverted, having specified the record list
which should be excluded from selection (except):

group SampleGroup: en(Sample group), ru(Sample group)
var Quantity
total Stock: Quantity
filter ArticleID.GroupID: except 1, 2, 3 with descendants
end

Group Sources

The calculated groups of virtual totals form hierarchy quite often or somehow relate to each other. For
example, it is convenient to divide profit into profit from primary activity, profit from property
realization, profit from other operations and so on, and expenses — into the main expenses, expenses
due to currency exchange. The structure of groups can be kept directly in the description of a virtual
total so that the value of one group is consisted of values of the other groups. Sources-groups are one of
the ways to achieve this:

group Expenses: en(Expenses), ru(3aTpaThl)
no details
var Amount
group CoreExpenses: Quantity
group CurrencyExpenses: Quantity
end

Here, CoreExpenses and CurrencyExpenses groups act as the data source for the group Expenses. The
option "no details" says that in the report the Expenses group will not have any details and will be
always presented in exactly one line:

© 2018 Ultimate 99

Developer

ULTRAATE

SOLID

Shoe Shiner repart from 9/1/2015 12:00:00 AM to 9/5/2015 11:59:59 PM

e T =1

|Group Cost item

= | & | Excel export

Identity Mame Amount.In Amount+ | Amount- | Amount, Out
LAY Total 0.00 32.00 44,00 -12.00
B 182 Rewvenues 0.00 32,00 0.00 32,00
] 183 Core expenses 0.00 0.00 18.00 -18.00
] 184 Currency expenses 0.00 0.00 4.00 -4.00
: 185 Expenses 0.00 0.00 22.00 -22.00

A mechanism for parent groups is another way to unite different groups calculated in the same group.
When using parent groups the report will look slightly different: parent group will not be separately
together with the other groups, but will be individual levels of the hierarchy. As a rule, this way of
representation of dependent groups looks more convenient in the report:

group Expenses: en(Expenses), ru(3aTpaThl)
children: CoreExpenses, CurrencyExpenses
end

Here it is how the report looks like, in which instead of the calculated group the parental group is used:

Shoe Shiner report from 2/1/2015 12:00:00 AM to 9/5/2015 11:59:59 PM

= =BER

|Gmup.Parent group, level 'I“Gru-up.P‘arent group, level F_'l Cost itern

= | Excel export

Identity | Mame | Amount.In | Amount+ | Amount— | Amount. Out
LAY Total 0.00 32.00 22.00 10.00
[] v 190 Expenses 0.00 0.00 22.00 -22.00
| 192 Core expenses 0.00 0.00 13.00 -18.00
| 193 Currency expenses 0.00 0.00 4.00 -4.00
[] 191 Rewvenues 0.00 32.00 0.00 32,00

© 2018 Ultimate

100

ULTRAATE

Developer SOLIn

Predicates

Description language of virtual totals allows describing the majority of the most widespread
combinations of totals, which can be required for reports. However, it is still significantly inferior in
flexibility to language of SQL-inquiries. Predicate mechanism is provided for those situations, where the
expressive means of the language is not enough.

Predicates are the mechanism, allowing to build a filtration conditions of any complexity in virtual
totals. The same predicate can be used in several virtual totals as filters for sources-totals. Predicates
are formulated in the SQL language, for that purpose the qualified programmer is required. The use of
ready predicates in virtual totals does not demand the participation of the programmer any more:

//announcement of the predicate DebtorAgents
predicate Debtor(Agent): DebtorAgents

group SampleGroup: en(Sample group), ru(Mpumep rpynnbl)
var Amount
// use of the predicate as the filter for a total AgentDebts
total AgentDebts: Amount
predicate Debtor(AgentID)
end

The text of a predicate represents SELECT-inquiry, selecting one or several columns which will be
arguments of the predicate. In a virtual total the filter-predicate will select only those lines which will
be selected by predicate SELECT-inquiry. The text of the predicate DebtorAgents is described in the
dictionary of predicates of virtual totals:

SELECT AGENT_ID AGENT

FROM VTR_AGENT_DEBTS

WHERE TRANSACTION_DATE < :vDateTo
GROUP BY AGENT_ID

HAVING SUM(AMOUNT) >0

Grammar

The full grammar of DSL language of the description of virtual totals is given below:
VirtualTotal -> Definition* ;

Definition -> DimensionDefinition
| VariableDefinition
| PredicateDefinition
| GroupDefinition ;

DimensionDefinition -> "dim" Identifier " (" Identifier ")" ":" LocalizedStringList ;

w,n
.

VariableDefinition -> "var" Identifier LocalizedStringlList ;

PredicateDefinition -> "predicate" Identifier "(" IdentifierList ") Identifier ;

GroupDefinition -> "group" Identifier LocalizedStringlList GroupBody ;

GroupBody -> ParentGroupBody
| CalculatedGroupBody ;

© 2018 Ultimate 101

ULTRAATE

Developer SOLIn

ParentGroupBody -> "children" ":" IdentifierList "end" ;
CalculatedGroupBody -> NoDetailsOpt GroupVariablelList "end" ;

NoDetailsOpt -> "no" "details" | Empty ;
LanguageSpecifier -> "ru"
| "en
| v

LocalizedString -> LanguageSpecifier "(" LocalizedStringBody ")" ;
LocalizedStringlList -> LocalizedString { "," LocalizedString };
GroupVariablelList -> GroupVariable* ;

GroupVariable -> = "var" Identifier ColonOpt SourceDefinitionList ;
ColonOpt -> ":" | Empty ;

SourceDefinitionList -> SourceDefinition* ;

SourceDefinition -> TotalSource
| GroupSource ;

GroupSource -> "group" Identifier ":" VariableReference ;

TotalSource -> "total" Identifier ":" VariableReference TotalSourceOptionList ;

TotalSourceOptionList -> TotalSourceOption* ;

TotalSourceOption -> DimensionMapping
| DimensionFilter
| PredicateFilter ;

DimensionMapping -> DimToDimMapping
| DimToValueMapping ;

DimToDimMapping -> "dim" Identifier ":" Identifier DotIdentifierOpt ;

DotIdentifierOpt -> "." Identifier
| Empty ;

DimToValueMapping -> "value" Identifier MappingValue ;

MappingValue -> Number
| "none" ;

DimensionFilter -> "filter" Identifier DotIdentifierOpt ":" FilterBody ;
FilterBody -> ExceptOpt NumberlList WithChildrenOpt ;

ExceptOpt -> "except”
| Empty ;

NotOpt -> "not"
| Empty ;

WithChildrenOpt -> "with" "descendants"”
| Empty ;

© 2018 Ultimate

102

ULTRAATE

Developer SOLIn

NumberList -> Number { "," Number } ;

PredicateFilter -> "predicate" ":" NotOpt Identifier " (" IdentifierList ")" ;
IdentifierList -> Identifier { "," Identifier } ;

VariableReference -> SignOpt Identifier ValueFilterOpt ;

SignOpt.Rule -> "-"
| n,on

+
| Empty ;

ValueFilterOpt -> "." "Add"
| u.u "Sub"

| Empty ;

Detailed description of metadata classes

Dictionary record class

During creation of each dictionary, a dictionary record class is generated. Its initial description is
represented with dictionary Name, and the list of its properties is represented with corresponding
dictionary properties.

Forinstance, let us consider creation of simple dictionary DictionaryName with the properties ID, Name
and ReferencelD.

The model class of the subject area, generated according to this description, looks like as follows:

[Table(Name = "VDICTIONARY_NAME"), Serializable]
[LocalizedDisplayName(typeof(DictionaryName),

"Ultima.Metadata.Classes.Resources"”, "DictionaryName")]

"Ultima.Metadata.Classes.Resources"”, "DictionaryName")] IDictionaryRecord, ISerializable,
ICloneable, IRevertibleChangeTracking, IEditableObject,
ICloneable, IRevertibleChangeTracking, IEditableObject,

{
[Column(Name = "ID", CanBeNull = false, IsPrimaryKey = true)]
[Column(Name = "ID", CanBeNull = false, IsPrimaryKey = true)]
"Ultima.Metadata.Classes.Resources", "DictionaryName_ID")]
public long ID { get; set; }
public long ID { get; set; }
[LocalizedDisplayName(typeof(DictionaryName),
"Ultima.Metadata.Classes.Resources"”, "DictionaryName Name")]
"Ultima.Metadata.Classes.Resources", "DictionaryName Name")]
[Column(Name = "REFERENCE_ID", CanBeNull = true)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DictionaryName),
"Ultima.Metadata.Classes.Resources"”, "DictionaryName_ReferenceID")]
public long ReferenceID { get; set; }
}

© 2018 Ultimate 103

ULTRAATE

Developer SOLIn

All classes of records of dictionaries implement the following interfaces:

e [DictionaryRecord - inherited from base interfaces /Entity and IBusinessObject. It is implemented only
with the dictionary records classes, therefore, a list of all classes of dictionary records can be obtained
by requesting who implements this interface;

public long ReferenceID { get; set; } IEntity, IBusinessObject

{

// Returns the link tables associated with the dictionary record.
IKeyValueStore<string, ILinkTable> LinkTables { get; }

// Returns the collections of dictionary records associated with the dictionary
record.
IKeyValueStore<string, IDictionaryTable> DictionaryLists { get; }

}
e [Serializable ensures support to efficient serialization (detailed description of the interface can be
found on MSDN website =+ eng/rus);
e [Cloneable ensures support to object cloning (detailed description of the interface can be found on
MSDN website = eng/rus);
e |RevertibleChangeTracking ensures support to backtracking of changes (detailed description of the
interface can be found on MSDN website =+ eng/rus), implements:
= AcceptChanges method resets the object status to unchanged, while accepting the changes;
= RejectChanges method restores the unchanged status of the object, while rejecting the changes;
= /sChanged property returns the value true if the object content was changed since the last call
of AcceptChanges method, otherwise —value false;
o |EditableObject provides functionality for transaction editing in DataRowView style (detailed
description of the interface can be found on MSDN website =+ eng/rus), implements methods:
= BeginEdit begins object editing;
= CancelEdit cancels changes, made after the last call of BeginEdit method;
= FndEdit confirms changes made since the last call of BeginEditmethod;
e [NotifyPropertyChanging —an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =+ eng/rus);
o [NotifyPropertyChanged — an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =» eng/rus).

The information about metadata of the dictionary is stored in static fields of its class and described as
follows:
public static IClassDescriptor StaticClassDescriptor

{
get
{
return new DictionaryDescriptor
{
ID = 4416,
Name = "DictionaryName",

Caption = ResourceHelper.GetString(typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources", "DictionaryName"),

"Ultima.Metadata.Classes.Resources", "DictionaryName"),

ImplementedInterfaces = new List<string> { "IDictionaryRecord" },

TableName = "DICTIONARY_NAME",

MapObjectName = "VDICTIONARY_NAME",

SequenceName = "DICTIONARY_NAME_SEQ",

Comments = string.Empty,

Guid = new Guid("8f1a68bf-4b3b-4c07-9676-2df9373992c5"),

DisplayFormat = "{ID} {Name}",

IsCached = true,

IsKernel = false,

TransparentTranslation = false,

© 2018 Ultimate 104

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/ru-ru/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/ru-ru/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.irevertiblechangetracking.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.irevertiblechangetracking(v=VS.100)
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanged.aspx

Developer

ULTRAATE

SOLID

TransparentTranslation = false,

DefaultSearchProperty = "Name",

DefaultSearchProperty = "Name",

DefaultLookupProperties = new List<string> { “ID”, “Name”, "Name" },
DefaultLookupProperties = new List<string> { “ID”, “Name”, "Name" },
IconName = null,

LargeIconName = null,

IconName = null,

LargeIconName = null,

Properties = new List<DictionaryPropertyDescriptor>

{

}s

new DictionaryPropertyDescriptor
{

ID = 4417,

Name = "ID",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_ID"),

"DictionaryName_ID"),

ColumnName = "ID",

DefaultValue = string.Empty,

Comments = string.Empty,

StringSize = 256,

IsRequired = true,

IsTranslatable = false,

¥
IsTranslatable = false,
{

ID = 4418,

Name = "Name",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_Name"),

Type = PropertyTypes.String,

ColumnName = "NAME",

DefaultValue = string.Empty,

Comments = string.Empty,

StringSize = 64,

IsRequired = true,

IsTranslatable = true,

¥
new DictionaryPropertyDescriptor
{

ID = 4799,

IsTranslatable = true,

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources",
"DictionaryName_ReferenceID"),

Type = PropertyTypes.Long,

ColumnName = "Reference_ID",

DefaultValue = "-1",

Comments = string.Empty,

StringSize = 256,

IsRequired = true,

IsTranslatable = false,

1

References = new List<DictionaryReferenceDescriptor>

{

© 2018 Ultimate

105

ULTRAATE

Developer SOLIn

new DictionaryReferenceDescriptor
{

ID = 2662,

Name = "Reference",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_ReferenceID"),

Type = "ReferenceDictionaryName",

ThisKey = "ReferencelD",

Comments = string.Empty,

GetClassDescriptor = () =>
DictionaryName.StaticClassDescriptor,

}s
}s

LinkTables = new List<DictionarylLinkTableDescriptor>

{

new DictionarylLinkTableDescriptor
{

ID = 3696,

Name = "AnotherDictionaryName",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_AnotherDictionaryName"),

Type = "LinkTableName",

OtherKey = "DictionaryNameID",

Comments = string.Empty,

GetClassDescriptor = () =>
DictionaryName.StaticClassDescriptor,

¥
¥

LookupProperties = new List<LookupPropertyDescriptor>

{

new LookupPropertyDescriptor
{

ID = 4968,

Name = "“Name",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_Lookup__Name"),

Comments = null,

1

new LookupPropertyDescriptor
{

ID = 4969,

Name = "ID",

Caption = ResourceHelper.GetString(
typeof(DictionaryName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DictionaryName_Lookup__ID"),

Comments = null,

¥
¥

Constants = new List<DictionaryConstantDescriptor>

{

new DictionaryConstantDescriptor

{
ID = 5612,
new DictionaryConstantDescriptor
Comments = "Constant name",

© 2018 Ultimate 106

ULTRAATE

Developer SOLIn

Value = 1,
3
s
¥

}

Each generated class has static property StaticClassDescriptor of type IClassDescriptor. While referring to
this property, all properties of the class can be obtained, to which columns they are displayed and so on.
The descriptors are detailed in the section Class descriptors.

The field of type EditableValue<T> corresponds to each dictionary property, where T is one of types
indicated in metadata:

private EditableValue<string>name; ///field

public string Name ///property
{

get { return name.Value; }
set { name.Value = value; }

}

Class EditableValue<T>implements the following interfaces:

ISerializable;

ICloneable;

IRevertibleChangeTracking;

IEditableObject;

IEquatable<T> ensures a possibility for comparison of current object with specified object of the same
type.

For example, during editing of the element of dictionary "Goods" (class Goods), its name is changed
(property Name). The property IsChanged of IRevertibleChangeTracking interface during change of
goods name (Goods.Name) is changed from false to true. Now while having applied AcceptChanges
method of the same interface, the changes can be confirmed or, having applied RejectChanges method,
they can be rolled back.

A collection of type DictionaryTable<T> may also correspond to the property (where T is a type of

collection element). Class DictionaryTable<T>implements the following interfaces and properties:

e BindinglList<T> — base class, ensures alignment to the data for the forms, sorting, filtration, etc. base
services (detailed description of the class can be found on MSDN website = eng/rus);

e [TypedList ensures a possibility to recognize the list element type and its (type) properties (detailed
description of the interface can be found on MSDN website =+ eng/rus);

e |RevertibleChangeTracking ensures support to backtracking of changes, implements AcceptChanges,
RejectChanges methods and IsChanged property;

e AddedlItems —a collection of added elements;

e Deleted/tems —a collection of deleted elements.

Class of link table record

During creation of each link table, a class of link table record is generated. Its initial description is
represented with link table Name, and the list of its properties is represented with corresponding link
table properties.

For instance, let us consider creation of simple link table LinkTableName with ReferencelD,
AnotherReferencelD and Value properties.

© 2018 Ultimate 107

http://msdn.microsoft.com/en-us/library/ms132679.aspx
http://msdn.microsoft.com/ru-ru/library/ms132679.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.itypedlist.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.itypedlist.aspx

ULTRAATE

Developer SOLIn

The model class of the subject area, generated according to this description, looks like as follows:
[Table(Name = "VLINKTABLENAME"), Serializable]

[

LocalizedDisplayName(typeof(LinkTableName),
"Ultima.Metadata.Classes.Resources"”, "LinkTableName")]

public partial class LinkTableName : ILinkTableRecord, IEntity, ISerializable,

}

ICloneable, IRevertibleChangeTracking, IEditableObject,
INotifyPropertyChanging, INotifyPropertyChanged, IEquatable<LinkTableName>

[Column(Name = "REFERENCE_ID", CanBeNull = false, IsPrimaryKey = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(LinkTableName),
"Ultima.Metadata.Classes.Resources", "LinkTableName_ReferenceID")]

public long ReferenceID { get; set; }

[Column(Name = "ANOTHER_REFERENCE_ID", CanBeNull = false, IsPrimaryKey = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(LinkTableName),
"Ultima.Metadata.Classes.Resources"”, "LinkTableName_AnotherReferenceID")]

public long AnotherReferenceID { get; set; }

[Column(Name = "VALUE", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(LinkTableName),
"Ultima.Metadata.Classes.Resources”, "LinkTableName_Value")]

public decimal Value { get; set; }

All classes of records of link tables implement the following interfaces:

ILinkTableRecord — inherited from base interface IEntity. It is implemented only with the records of
link tables, therefore, a list of all classes of the records of link tables can be obtained by requesting
who implements this interface;

public interface ILinkTableRecord : IEntity

{
}

IEntity —interface basic for classes of all objects;
ISerializable ensures support to efficient serialization (detailed description of the interface can be
found on MSDN website =+ eng/rus);
ICloneable ensures support to object cloning (detailed description of the interface can be found on
MSDN website = eng/rus);
IRevertibleChangeTracking ensures support to backtracking of changes (detailed description of the
interface can be found on MSDN website =+ eng/rus), implements:

= AcceptChanges method resets the object status to unchanged, while accepting the changes;

= RejectChanges method restores the unchanged status of the object, while rejecting the changes;

= [sChanged property returns the value true if the object content was changed since the last call of

AcceptChanges method, otherwise —value false;

IEditableObject provides functionality for transaction editing in DataRowView style (detailed
description of the interface can be found on MSDN website =+ eng/rus), implements methods:

= BeginEdit begins object editing;

= CancelEdit cancels changes, made after the last call of BeginEdit method;

= EndEdit confirms changes made since the last call of BeginEditmethod;
INotifyPropertyChanging —an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =+ eng/rus);
INotifyPropertyChanged — an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =» eng/rus).
IEquatable<T> ensures a possibility for comparison of current object with specified object of the same

type.

© 2018 Ultimate 108

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/ru-ru/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/ru-ru/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.irevertiblechangetracking.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.irevertiblechangetracking(v=VS.100)
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanged.aspx

ULTRAATE

Developer SOLIn

The information about metadata of the link table is stored in static fields of its class and described as
follows:

public static IClassDescriptor StaticClassDescriptor

{
get
{
return new LinkTableDescriptor
{
ID = 3329,
Name = "LinkTableName",

Caption = ResourceHelper.GetString(typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”, "LinkTableName"),

Type = typeof(Price),

ImplementedInterfaces = new List<string> { "ILinkTableRecord" },

TableName = "LINKTABLENAME",

MapObjectName = "VLINKTABLENAME",

Comments = string.Empty,

FilterProperties = new List<string> {"ReferencelD",
"AnotherReferenceID", "Value" },

DisplayFormat = string.Empty,

IsKernel = false,

IconName = null,

LargeIconName = null,

Icon = null,

LargeIcon = null,

Properties = new List<LinkTablePropertyDescriptor>

{

new LinkTablePropertyDescriptor
{

ID = 3332,

Name = "ReferenceID",

Caption = ResourceHelper.GetString(
typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"LinkTableName_ReferenceID"),

Type = PropertyTypes.Long,

ColumnName = "REFERENCE_ID",

DefaultValue = "-1",

Comments = string.Empty,

StringSize = 0,

IsRequired = true,

IsPrimaryKey = true,

¥
new LinkTablePropertyDescriptor
{

ID = 3344,

Name = "AnotherReferenceID",

Caption = ResourceHelper.GetString(
typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"LinkTableName_AnotherReferenceID"),

Type = PropertyTypes.Long,

ColumnName = "ANOTHER_REFERENCE_ID",

DefaultValue = "-1",

Comments = string.Empty,

StringSize = 0,

IsRequired = true,

IsPrimaryKey = true,

¥

new LinkTablePropertyDescriptor

{

© 2018 Ultimate 109

ULTRAATE

Developer SOLIn

ID = 3350,

Name = "Value",

Caption = ResourceHelper.GetString(
typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"LinkTableName_Value"),

Type = PropertyTypes.Decimal,

ColumnName = "VALUE",

DefaultValue = string.Empty,

Comments = string.Empty,

StringSize = 0,

IsRequired = true,

IsPrimaryKey = false,

¥
¥
References = new List<LinkTableReferenceDescriptor>

{

new LinkTableReferenceDescriptor
{

Name = "Reference",

Caption = ResourceHelper.GetString(
typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"LinkTableName_Reference"),

Type = "ReferenceDictionary",

ThisKey = "ReferencelD",

Comments = string.Empty,

GetClassDescriptor = () =>
ReferenceDictionary.StaticClassDescriptor,

}s

new LinkTableReferenceDescriptor
{

Name = "AnotherReference",

Caption = ResourceHelper.GetString(
typeof(LinkTableName).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"LinkTableName_AnotherReference"),

Type = "AnotherReferenceDictionary",

ThisKey = "AnotherReferencelD",

Comments = string.Empty,

GetClassDescriptor = () =>
AnotherReferenceDictionary.StaticClassDescriptor,

¥
¥
¥

}

Each generated class has static property StaticClassDescriptor of type IClassDescriptor. While referring to
this property, all properties of the class can be obtained, to which columns they are displayed and so on.
The descriptors are detailed in the section Class descriptors.

The field of type EditableValue<T> corresponds to each property of link table record, where T is one of
types indicated in metadata: Class EditableValue<T>implements the following interfaces:

e [Serializable;

ICloneable;

IRevertibleChangeTracking;

IEditableObject;

IEquatable<T> ensures a possibility for comparison of current object with specified object of the same
type.

© 2018 Ultimate 110

ULTRAATE

Developer SOLIn

Document class

During creation of each document type, a class of this document is generated. The initial name is
represented with document type name (Name) +"Document", and the list of its properties is
represented with corresponding properties of the document type.

For example, let us consider creation of simple document type DocType with its properties Agent/D and
Amount and subtype DocSubType.

The model class of the subject area, generated according to this description, looks like as follows:

[Table(Name = "VD_DOCTYPE"), Serializable]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument™)]

public partial class DocTypeDocument : IDocument, IEntity, ISerializable, ICloneable,
IRevertibleChangeTracking, IEditableObject, INotifyPropertyChanging,
INotifyPropertyChanged, IEquatable<DocTypeDocument>

[Column(Name = "AGENT_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument_ AgentID")]

public long AgentID { get; set; }

[Column(Name = "AMOUNT", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_Amount")]

public decimal Amount { get; set; }

[Column(Name = "DELETED", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument Deleted")]

public bool Deleted { get; set; }

[Column(Name = "ID", CanBeNull = false, IsPrimaryKey = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_ ID")]

public long ID { get; set; }

[Column(Name = "CREATOR_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_ CreatorID")]

public long CreatorID { get; set; }

[Column(Name = "COMMENTS", CanBeNull = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument_ Comments™)]

public string Comments { get; set; }

[Column(Name = "TOTALS_LIST", CanBeNull = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument_TotalsList")]

public string TotalsList { get; set; }

© 2018 Ultimate 111

ULTRAATE

Developer SOLIn

[Column(Name = "DOCTYPE_OBJ_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_TypeID")]

public long TypeID { get; set; }

[Column(Name = "SUBTYPE_OBJ_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_ SubtypeID")]

public long SubtypeID { get; set; }

[Column(Name = "VERSION", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument Version")]

public long Version { get; set; }

[Column(Name = "DESCRIPTION", CanBeNull = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources"”, "DocTypeDocument_Description")]

public string Description { get; set; }

[Column(Name = "CREATION_DATE", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources™, "DocTypeDocument_CreationDate")]

public DateTime CreationDate { get; set; }

[Column(Name = "TRANSACTION_DATE", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocTypeDocument),
"Ultima.Metadata.Classes.Resources", "DocTypeDocument_TransactionDate")]

public DateTime TransactionDate { get; set; }

}

In addition to the properties ArticleID and Amount, the generated class contains description of system
properties, which are created automatically for each document type.

All classes of documents implement the following interfaces:

e |Document — inherited from base interfaces IEntity and IBusinessObject. It is implemented only with
the classes of documents, therefore, a list of all classes of documents can be obtained by requesting
who implements this interface:

public interface IDocument : IEntity, IBusinessObject
{
long TypelID { get; set; }
long SubtypeID { get; set; }
long CreatorID { get; set; }
DateTime CreationDate { get; set; }
DateTime TransactionDate { get; set; }
string Description { get; set; }
string Comments { get; set; }
string TotalsList { get; set; }
bool Deleted { get; set; }
long Version { get; set; }

// Returns the table parts of the document.
IKeyValueStore<string, ITablePart> TableParts { get; }

© 2018 Ultimate 112

ULTRAATE

Developer SOLIn

}

e [Entity —interface basic for classes of all objects;
e [Serializable ensures support to efficient serialization (detailed description of the interface can be
found on MSDN website =+ eng/rus);
e [Cloneable ensures support to object cloning (detailed description of the interface can be found on
MSDN website =+ eng/rus);
e |RevertibleChangeTracking ensures support to backtracking of changes (detailed description of the
interface can be found on MSDN website =+ eng/rus), implements:
= AcceptChanges method resets the object status to unchanged, while accepting the changes;
= RejectChanges method restores the unchanged status of the object, while rejecting the changes;
= [sChanged property returns the value true if the object content was changed since the last call of
AcceptChanges method, otherwise —value false;
e |EditableObject provides functionality for transaction editing in DataRowView style (detailed
description of the interface can be found on MSDN website =+ eng/rus), implements methods:
= BeginEdit begins object editing;
= CancelEdit cancels changes, made after the last call of BeginEdit method;
= EndEdit confirms changes made since the last call of BeginEditmethod;
e |NotifyPropertyChanging —an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =+ eng/rus);
¢ [NotifyPropertyChanged — an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =» eng/rus).
e |[Equatable<T> ensures a possibility for comparison of current object with specified object of the same

type.
The information about metadata of the dictionary is stored in static fields of its class and described as
follows:
public static IClassDescriptor StaticClassDescriptor

{
get
{
return new DocumentDescriptor
{
ID = 4111,
Name = "DocTypeDocument",

Caption = ResourceHelper.GetString(typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources”, "DocTypeDocument™),

Type = typeof(DocTypeDocument),

ImplementedInterfaces = new List<string> { "IDocument" },

TableName = "D_DOCTYPE",

MapObjectName = "VD_DOCTYPE",

Comments = string.Empty,

Guid = new Guid("19e78552-a4e9-4c6d-8727-3ecfa7a7f6c6"),

DisplayFormat = "{Description}",

FilterProperties = new List<string> { "ID", "AgentID", "Amount",
"Version", "TotalsList", "TypeID", "CreationDate",
"SubtypeID", "CreatorID", "Deleted", "TransactionDate",
"Description”, "Comments" },

IconName = null,

LargeIconName = null,

Icon = null,

LargeIcon = null,

Properties = new List<DocumentPropertyDescriptor>

{

new DocumentPropertyDescriptor

{

© 2018 Ultimate 113

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/ru-ru/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/ru-ru/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.irevertiblechangetracking.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.irevertiblechangetracking(v=VS.100)
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanged.aspx

ULTRAATE

Developer SOLIn

ID = 4112,

Name = "ID",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_ID"),

Type = PropertyTypes.Long,

ColumnName = "ID",

DefaultValue = string.Empty,

Comments = "Identity",

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 5223,

Name = "AgentID",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_AgentID"),

Type = PropertyTypes.Long,

ColumnName = "AGENT_ID",

DefaultValue = "-1",

Comments = string.Empty,

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 5801,

Name = "Amount",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Amount"),

Type = PropertyTypes.Decimal,

ColumnName = "AMOUNT",

DefaultValue = string.Empty,

Comments = string.Empty,

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4119,

Name = "Version",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Version"),

Type = PropertyTypes.Long,

ColumnName = "VERSION",

DefaultValue = string.Empty,

Comments = "Document version",

© 2018 Ultimate 114

ULTRAATE

Developer SOLIn

StringSize = 256,
IsRequired = true,
IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4122,

Name = "TotalslList",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_TotalsList"),

Type = PropertyTypes.String,

ColumnName = "TOTALS_LIST",

DefaultValue = string.Empty,

Comments = "Totals 1list",

StringSize = 256,

IsRequired = false,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4113,

Name = "TypelID",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_TypeID"),

Type = PropertyTypes.Long,

ColumnName = "DOCTYPE_OBJ_ID",

DefaultValue = "-1",

Comments = "Document type identity",

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4117,

Name = "CreationDate",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_CreationDate"),

Type = PropertyTypes.DateTime,

ColumnName = "CREATION_DATE",

DefaultValue = string.Empty,

Comments = "Creation date",

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

}s

new DocumentPropertyDescriptor

{
ID = 4114,
Name = "SubtypeID",

© 2018 Ultimate 115

ULTRAATE

Developer SOLIn

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_SubtypeID"),

Type = PropertyTypes.Long,

ColumnName = "SUBTYPE_OBJ_ID",

DefaultValue = "-1",
Comments = string.Empty,
StringSize = 256,

IsRequired = true,
IsMultilanguage = false,

3s
new DocumentPropertyDescriptor
{

ID = 4115,

Name = "CreatorID",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_CreatorID"),

Type = PropertyTypes.Long,

ColumnName = "CREATOR_ID",

DefaultValue = "-1",

Comments = "Document creator",

StringSize = 256,

IsRequired = true,

IsMultilanguage = false,

3s
new DocumentPropertyDescriptor
{
ID = 4116,
Name = "Deleted",
Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Deleted"),
Type = PropertyTypes.Boolean,
ColumnName = "DELETED",
DefaultValue = "false",
Comments = "Is document deleted",
StringSize = 256,
IsRequired = true,
IsMultilanguage = false,
3s
new DocumentPropertyDescriptor
{

ID = 4118,

Name = "TransactionDate",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_TransactionDate"),

Type = PropertyTypes.DateTime,

ColumnName = "TRANSACTION_DATE",

DefaultValue = string.Empty,

Comments = "Transaction date",

StringSize = 256,

IsRequired = true,

© 2018 Ultimate 116

ULTRAATE

Developer SOLIn

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4120,

Name = "Description",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Description"),

Type = PropertyTypes.String,

ColumnName = "DESCRIPTION",

DefaultValue = string.Empty,

Comments = "Description”,

StringSize = 256,

IsRequired = false,

IsMultilanguage = false,

¥
new DocumentPropertyDescriptor
{

ID = 4121,

Name = "Comments",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Comments"),

Type = PropertyTypes.String,

ColumnName = "COMMENTS",

DefaultValue = string.Empty,

Comments = "Comments",

StringSize = 256,

IsRequired = false,

IsMultilanguage = false,

¥
¥
References = new List<DocumentReferenceDescriptor>
{

new DocumentReferenceDescriptor

{

Name = "Agent",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Agent"),

Type = "Agent",

ThisKey = "AgentID",

Comments = string.Empty,

GetClassDescriptor = () => Agent.StaticClassDescriptor,

¥
new DocumentReferenceDescriptor
{

Name = "Creator",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Creator"),

Type = "User",

ThisKey = "CreatorID",

© 2018 Ultimate 117

ULTRAATE

Developer SOLIn

Comments = "Document creator",
GetClassDescriptor = () => User.StaticClassDescriptor,

}s

new DocumentReferenceDescriptor
{

Name = "Type",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Type"),

Type = "DocumentType",

ThisKey = "TypeID",

Comments = "Document type",

GetClassDescriptor = () =>
DocumentType.StaticClassDescriptor,

}s

new DocumentReferenceDescriptor
{

Name = "Subtype",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Subtype"),

Type = "DocumentSubtype",

ThisKey = "SubtypeID",

Comments = "Document subtype",

GetClassDescriptor = () =>
DocumentSubtype.StaticClassDescriptor,

}s
}s

Subtypes = new List<DocumentSubtypeDescriptor>

{

new DocumentSubtypeDescriptor
{

ID = 5231,

Name = "DocSubType",

Caption = ResourceHelper.GetString(
typeof(DocType).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocType_Subtype_DocSubType"),

Comments = string.Empty,

}s

TableParts = new List<DocumentTablePartDescriptor>

{

new DocumentTablePartDescriptor
{

ID = 5229,

Name = "Articles",

Caption = ResourceHelper.GetString(
typeof(DocTypeDocument).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocTypeDocument_Articles"),

Type = "ArticleTablePartRow",

OtherKey = "DocumentID",

Comments = string.Empty,

GetClassDescriptor = () =>
ArticleTablePartRow.StaticClassDescriptor,

}s

© 2018 Ultimate 118

ULTRAATE

Developer SOLIn

e
}i5
}

Each generated class has static property StaticClassDescriptor of type IClassDescriptor. While referring to
this property, all properties of the class can be obtained, to which columns they are displayed and so on.
The descriptors are detailed in the section Class descriptors.

Each document property corresponds to the field of EditableValue<T>type, where T is one of the types
indicated in metadata:
private EditableValue<int>b; ///field

public int B; ///property

{
get { return b.Value; }
set { b.vValue = value; }

}

Class EditableValue<T>implements the following interfaces:

e [Serializable;

ICloneable;

IRevertibleChangeTracking;

IEditableObject;

IEquatable<EditableValue<T> ensures a possibility for comparison of current object with specified
object of the same type.

A collection of type DictionaryTable<T> may also correspond to the property (where T is a type of

collection element). Class DictionaryTable<T>implements the following interfaces and properties:

e BindingList<T> — base class, ensures alignment to the data for the forms, sorting, filtration, etc. base
services (detailed description of the class can be found on MSDN website =+ eng/rus);

e [TypedList ensures a possibility to recognize the list element type and its (type) properties (detailed
description of the interface can be found on MSDN website =+ eng/rus);

e |RevertibleChangeTracking ensures support to backtracking of changes, implements AcceptChanges,
RejectChanges methods and IsChangedproperty;

e Addedltems —a collection of added elements;

e Deleted/tems —a collection of deleted elements.

Class of table part record

During creation of each table part, a class of table part record is generated. Its initial description is
represented with table part name (Name) +"TablePartRow", and the list of its properties is represented
with corresponding properties of the table part.

For example, let us consider creation of simple table partDocumentName with ArticlelD and Amount.

The model class of the subject area, generated according to this description, looks like as follows:

[[Table(Name = "VTP_DOCUMENTNAME"), Serializable]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”, "DocumentNameTablePartRow")]
"Ultima.Metadata.Classes.Resources"”, "DocumentNameTablePartRow")] ITablePartRecord,
TEntity, ISerializable,
ICloneable, IRevertibleChangeTracking, IEditableObject, INotifyPropertyChanging,
INotifyPropertyChanged, IEquatable<DocumentNameTablePartRow>

© 2018 Ultimate 119

http://msdn.microsoft.com/en-us/library/ms132679.aspx
http://msdn.microsoft.com/ru-ru/library/ms132679.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.itypedlist.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.itypedlist.aspx

ULTRAATE

Developer SOLIn

[Column(Name = "ARTICLE_ID", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources",
"DocumentNameTablePartRow_ArticleID")]
"DocumentNameTablePartRow_ArticleID")]

[Column(Name = "AMOUNT", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Amount")]
"DocumentNameTablePartRow_Amount")]

[Column(Name = "ID", CanBeNull = false, IsPrimaryKey = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources",
"DocumentNameTablePartRow_ID")]

public long ID { get; set; }

[Column(Name = "DOCUMENT_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentID")]

public long DocumentID { get; set; }

[Column(Name = “TP_ENTRY_ID”, CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntryID")]
public long TablePartEntryID { get; set; }

public long TablePartEntryID { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Checked")]

public bool Checked { get; set; }

[Column(Name = "TRANSACTION_DATE", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources”,
"DocumentNameTablePartRow_TransactionDate")]
public DateTime TransactionDate { get; set; }

public DateTime TransactionDate { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Deleted")]

public bool Deleted { get; set; }

public bool Deleted { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources",
"DocumentNameTablePartRow_DocumentDeleted")]

public bool DocumentDeleted { get; set; }

© 2018 Ultimate 120

ULTRAATE

Developer SOLIn

}

In addition to the properties ArticleID and Amount, the generated class contains description of system
properties, which are created automatically for each table part.

All classes of records of link tables implement the following interfaces:

e [TablePartRecord - inherited from base interfaces /Entity and /BusinessObject. It is implemented only
with the records of table parts, therefore, a list of all classes of the records of table parts can be
obtained by requesting who implements this interface;

public bool DocumentDeleted { get; set; } IEntity, IBusinessObject

{
long DocumentID { get; set; }

DateTime TransactionDate { get; set; }
bool DocumentDeleted { get; set; }
bool Deleted { get; set; }

long TablePartEntryID { get; set; }
bool Checked { get; set; }

}
e |Entity —interface basic for classes of all objects;
e /Serializable ensures support to efficient serialization (detailed description of the interface can be
found on MSDN website =+ eng/rus);
e [Cloneable ensures support to object cloning (detailed description of the interface can be found on
MSDN website =+ eng/rus);
e |RevertibleChangeTracking ensures support to backtracking of changes (detailed description of the
interface can be found on MSDN website =+ eng/rus), implements:
= AcceptChanges method resets the object status to unchanged, while accepting the changes;
= RejectChanges method restores the unchanged status of the object, while rejecting the changes;
= /sChanged property returns the value true if the object content was changed since the last call of
AcceptChanges method, otherwise —value false;
e |EditableObject provides functionality for transaction editing in DataRowView style (detailed
description of the interface can be found on MSDN website =+ eng/rus), implements methods:
= BeginEdit begins object editing;
= CancelEdit cancels changes, made after the last call of BeginEdit method;
® EndEdit confirms changes made since the last call of BeginEditmethod;
e [NotifyPropertyChanging —an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =» eng/rus);
e |NotifyPropertyChanged — an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website = eng/rus).
e |Equatable<T>ensures a possibility for comparison of current object with specified object of the same

type.
The information about metadata of the table part is stored in static fields of its class and described as
follows:
public static IClassDescriptor StaticClassDescriptor

{
get
{
public static IClassDescriptor StaticClassDescriptor
{
ID = 6784,
Name = "DocumentNameTablePartRow",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow"),

Type = typeof(DocumentNameTablePartRow),

© 2018 Ultimate 121

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/ru-ru/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/ru-ru/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.irevertiblechangetracking.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.irevertiblechangetracking(v=VS.100)
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanged.aspx

Developer

ULTRAATE

SOLID

ImplementedInterfaces = new List<string> { "ITablePartRecord" },

TableName = "TP_DOCUMENT_NAME",

MapObjectName = "VTP_DOCUMENT NAME",

Comments = string.Empty,

Guid = new Guid("d4d13aae-e3f4-c7cc-3732-d2a70ca9db32"),

DisplayFormat = "{TablePartEntryID}, {TransactionDate},

FilterProperties = new List<string> { "DocumentID",
"TransactionDate", "Deleted", "DocumentDeleted" },

IconName = null,

LargeIconName = null,

Icon = null,

LargeIcon = null,

Properties = new List<TablePartPropertyDescriptor>

{

new TablePartPropertyDescriptor
{
ID = 6794,
Name = "ArticleID",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_ArticleID"),
Type = PropertyTypes.Long,
ColumnName = "ARTICLE_ID",
DefaultValue = "-1",
Comments = string.Empty,
StringSize = 256,
IsRequired = true,
IsVisible = true,

}s

IsVisible = true,
{
ID = 6798,
Name = "Amount",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Amount"),
"DocumentNameTablePartRow_Amount"),
ColumnName = "AMOUNT",
DefaultValue = string.Empty,
Comments = string.Empty,
StringSize = 256,
IsRequired = true,
IsVisible = true,

}s

new TablePartPropertyDescriptor
{
ID = 6785,
Name = "ID",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"PurchaseArticleTablePartRow_ID"),
Type = PropertyTypes.Long,
ColumnName = "ID",
DefaultValue = string.Empty,
Comments = "Identity",
StringSize = 256,
IsRequired = true,
IsVisible = false,

}s

© 2018 Ultimate

122

Developer

}s

}s

}s

ULTRAATE

SOLID

new TablePartPropertyDescriptor

ID = 6786,

Name = "DocumentID",

Caption = ResourceHelper.GetString(
Name = "DocumentID",

"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentID"),
Type = PropertyTypes.Long,
Type = PropertyTypes.Long,

DefaultValue = "-1",

Comments = "Document identity",
StringSize = 256,

Comments = "Document identity",

IsVisible = false,
new TablePartPropertyDescriptor

ID = 6787,

Name = "TablePartEntryID",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntryID"),

Type = PropertyTypes.Long,

ColumnName = "TP_ENTRY_ID",

DefaultValue = "-1",

Comments = "Table part entry identity",

StringSize = 256,

DefaultvValue = "-1",

IsVisible = false,

new TablePartPropertyDescriptor

ID = 6788,

Name = "Checked",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Checked"),

Type = PropertyTypes.Boolean,

ColumnName = "CHECKED",

DefaultValue = "false",

Comments = "Checked",

StringSize = 256,

IsRequired = true,

IsVisible = false,

new TablePartPropertyDescriptor

ID = 6789,

new TablePartPropertyDescriptor

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TransactionDate"),

Type = PropertyTypes.DateTime,

ColumnName = "TRANSACTION_DATE",

DefaultValue = string.Empty,

Comments = "Document transaction date",

StringSize = 256,

IsRequired = true,

© 2018 Ultimate

123

ULTRAATE

Developer SOLIn

IsVisible = false,

}s

new TablePartPropertyDescriptor

ID = 6790,

Name = "Deleted",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Deleted"),

Type = PropertyTypes.Boolean,

ColumnName = "DELETED",

DefaultValue = "false",

Comments = "Deleted",

StringSize = 256,

IsRequired = true,

IsVisible = false,

}s

new TablePartPropertyDescriptor

ID = 6791,

Name = "DocumentDeleted",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentDeleted"),

Type = PropertyTypes.Boolean,

ColumnName = "DOCUMENT_DELETED",

DefaultValue = "false",

Comments = "Document deleted",

StringSize = 256,

IsRequired = true,

IsVisible = false,

}s
}s

References = new List<TablePartReferenceDescriptor>

{

new TablePartReferenceDescriptor
{

Name = "Article",

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Article"),

Type = "Article",

ThisKey = "ArticleID",

Comments = string.Empty,

GetClassDescriptor = () =>
Article.StaticClassDescriptor,

}s

new TablePartReferenceDescriptor
{
Name = "TablePartEntry",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntry"),
Type = "DocumentTablePart",
ThisKey = "TablePartEntryID",
Comments = "Table part entry",
GetClassDescriptor = () =>
DocumentTablePart.StaticClassDescriptor,

© 2018 Ultimate 124

ULTRAATE

Developer SOLIn

¥
new TablePartReferenceDescriptor
{
Name = "Document",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Document™),
Type = "Document",
ThisKey = "DocumentID",
Comments = "Document",
GetClassDescriptor = () =>
Document.StaticClassDescriptor,
¥

e
}i5

}

Each generated class has static property StaticClassDescriptor of type IClassDescriptor. While referring to
this property, all properties of the class can be obtained, to which columns they are displayed and so on.
The descriptors are detailed in the section Class descriptors.

The field of type EditableValue<T> corresponds to each property of table part record, where T is one of
types indicated in metadata: Class EditableValue<T>implements the following interfaces:

ISerializable;

ICloneable;

IRevertibleChangeTracking;

IEditableObject;

IEquatable<T> ensures a possibility for comparison of current object with specified object of the same
type.

Total transaction class

During creation of each table part, a class of table part record is generated. Its initial description is
represented with table part name (Name) +"TablePartRow", and the list of its properties is represented
with corresponding properties of the table part.

For example, let us consider creation of simple table part DocumentName with ArticlelD and Amount.

The model class of the subject area, generated according to this description, looks like as follows:

[[Table(Name = "VTP_DOCUMENTNAME"), Serializable]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources”, "DocumentNameTablePartRow")]
"Ultima.Metadata.Classes.Resources", "DocumentNameTablePartRow")] ITablePartRecord,
IEntity, ISerializable,
ICloneable, IRevertibleChangeTracking, IEditableObject, INotifyPropertyChanging,
INotifyPropertyChanged, IEquatable<DocumentNameTablePartRow>

[Column(Name = "ARTICLE_ID", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_ArticleID")]
"DocumentNameTablePartRow_ArticleID")]

© 2018 Ultimate 125

Developer

}

[Column(Name = "AMOUNT", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources",
"DocumentNameTablePartRow_Amount")]
"DocumentNameTablePartRow_Amount")]

[Column(Name = "ID", CanBeNull = false, IsPrimaryKey = true)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_ID")]

public long ID { get; set; }

[Column(Name = "DOCUMENT_ID", CanBeNull = false)]

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources",
"DocumentNameTablePartRow_DocumentID")]

public long DocumentID { get; set; }

[Column(Name = “TP_ENTRY_ID”, CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntryID")]
public long TablePartEntryID { get; set; }

public long TablePartEntryID { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Checked")]

public bool Checked { get; set; }

[Column(Name = "TRANSACTION DATE", CanBeNull = false)]
[Browsable(true)]
[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TransactionDate")]
public DateTime TransactionDate { get; set; }

public DateTime TransactionDate { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources”,
"DocumentNameTablePartRow_Deleted")]

public bool Deleted { get; set; }

public bool Deleted { get; set; }

[Browsable(true)]

[LocalizedDisplayName(typeof(DocumentNameTablePartRow),
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentDeleted")]

public bool DocumentDeleted { get; set; }

ULTRAATE

SOLID

In addition to the properties ArticlelD and Amount, the generated class contains description of system

properties, which are created automatically for each table part.

All classes of records of link tables implement the following interfaces:

© 2018 Ultimate

126

ULTRAATE

Developer SOLIn

e [TablePartRecord - inherited from base interfaces IEntity and IBusinessObject. It is implemented only
with the records of table parts, therefore, a list of all classes of the records of table parts can be
obtained by requesting who implements this interface;

public bool DocumentDeleted { get; set; } IEntity, IBusinessObject

{
long DocumentID { get; set; }

DateTime TransactionDate { get; set; }
bool DocumentDeleted { get; set; }
bool Deleted { get; set; }

long TablePartEntryID { get; set; }
bool Checked { get; set; }

}
e |Entity —interface basic for classes of all objects;
e [Serializable ensures support to efficient serialization (detailed description of the interface can be
found on MSDN website =+ eng/rus);
e [Cloneable ensures support to object cloning (detailed description of the interface can be found on
MSDN website =+ eng/rus);
e |RevertibleChangeTracking ensures support to backtracking of changes (detailed description of the
interface can be found on MSDN website =+ eng/rus), implements:
= AcceptChanges method resets the object status to unchanged, while accepting the changes;
= RejectChanges method restores the unchanged status of the object, while rejecting the changes;
= [sChanged property returns the value true if the object content was changed since the last call of
AcceptChanges method, otherwise —value false;
o |EditableObject provides functionality for transaction editing in DataRowView style (detailed
description of the interface can be found on MSDN website =+ eng/rus), implements methods:
= BeginEdit begins object editing;
= CancelEdit cancels changes, made after the last call of BeginEdit method;
= EndEdit confirms changes made since the last call of BeginEditmethod;
e |NotifyPropertyChanging —an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =+ eng/rus);
o [NotifyPropertyChanged — an event for support to data alignment to the control elements WinForms
(detailed description of the interface can be found on MSDN website =» eng/rus).
e |[Equatable<T> ensures a possibility for comparison of current object with specified object of the same

type.

The information about metadata of the table part is stored in static fields of its class and described as
follows:

public static IClassDescriptor StaticClassDescriptor

{
get
{
public static IClassDescriptor StaticClassDescriptor
{
ID = 6784,
Name = "DocumentNameTablePartRow",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow"),
Type = typeof(DocumentNameTablePartRow),
ImplementedInterfaces = new List<string> { "ITablePartRecord" },
TableName = "TP_DOCUMENT_NAME",
MapObjectName = "VTP_DOCUMENT_NAME",
Comments = string.Empty,
Guid = new Guid("d4dl3aae-e3f4-c7cc-3732-d2a70ca9db32"),
DisplayFormat = "{TablePartEntryID}, {TransactionDate},

© 2018 Ultimate 127

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/ru-ru/library/system.runtime.serialization.iserializable.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/ru-ru/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.irevertiblechangetracking.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.irevertiblechangetracking(v=VS.100)
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanging.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged.aspx
http://msdn.microsoft.com/ru-ru/library/system.componentmodel.inotifypropertychanged.aspx

ULTRAATE

Developer SOLIn

FilterProperties = new List<string> { "DocumentID",
"TransactionDate", "Deleted", "DocumentDeleted" },

IconName = null,

LargeIconName = null,

Icon = null,

LargeIcon = null,

Properties = new List<TablePartPropertyDescriptor>

{

new TablePartPropertyDescriptor
{
ID = 6794,
Name = "ArticleID",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_ArticleID"),
Type = PropertyTypes.Long,
ColumnName = "ARTICLE_ID",
DefaultValue = "-1",
Comments = string.Empty,
StringSize = 256,
IsRequired = true,
IsVisible = true,
¥
IsVisible = true,
{
ID = 6798,
Name = "Amount",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Amount"),
"DocumentNameTablePartRow_Amount"),
ColumnName = "AMOUNT",
DefaultValue = string.Empty,
Comments = string.Empty,
StringSize = 256,
IsRequired = true,
IsVisible = true,
¥
new TablePartPropertyDescriptor
{
ID = 6785,
Name = "ID",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"PurchaseArticleTablePartRow_ID"),
Type = PropertyTypes.Long,
ColumnName = "ID",
DefaultValue = string.Empty,
Comments = "Identity",
StringSize = 256,
IsRequired = true,
IsVisible = false,

}s

new TablePartPropertyDescriptor

ID = 6786,
Name = "DocumentID",

© 2018 Ultimate

128

Developer

1

1

1

1

ULTRAATE

SOLID

Caption = ResourceHelper.GetString(
Name = "DocumentID",
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentID"),

Type = PropertyTypes.Long,

Type = PropertyTypes.Long,

DefaultValue = "-1",

Comments = "Document identity",
StringSize = 256,

Comments = "Document identity",

IsVisible = false,
new TablePartPropertyDescriptor

ID = 6787,

Name = "TablePartEntryID",

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntryID"),

Type = PropertyTypes.Long,

ColumnName = "TP_ENTRY_ID",

DefaultValue = "-1",

Comments = "Table part entry identity",

StringSize = 256,

DefaultValue = "-1",

IsVisible = false,

new TablePartPropertyDescriptor

ID = 6788,

Name = "Checked",

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Checked"),

Type = PropertyTypes.Boolean,

ColumnName = "CHECKED",

DefaultValue = "false",

Comments = "Checked",
StringSize = 256,
IsRequired = true,

IsVisible = false,
new TablePartPropertyDescriptor

ID = 6789,

new TablePartPropertyDescriptor

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TransactionDate"),

Type = PropertyTypes.DateTime,

ColumnName = "TRANSACTION_DATE",

DefaultValue = string.Empty,

Comments = "Document transaction date",
StringSize = 256,
IsRequired = true,

IsVisible = false,

new TablePartPropertyDescriptor

© 2018 Ultimate

129

ULTRAATE

Developer SOLIn

ID = 6790,

Name = "Deleted",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Deleted"),

Type = PropertyTypes.Boolean,

ColumnName = "DELETED",

DefaultValue = "false",

Comments = "Deleted",

StringSize = 256,

IsRequired = true,

IsVisible = false,

}s

new TablePartPropertyDescriptor

ID = 6791,

Name = "DocumentDeleted",

Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_DocumentDeleted"),

Type = PropertyTypes.Boolean,

ColumnName = "DOCUMENT_DELETED",

DefaultValue = "false",

Comments = "Document deleted",

StringSize = 256,

IsRequired = true,

IsVisible = false,

}s
}s

References = new List<TablePartReferenceDescriptor>

{

new TablePartReferenceDescriptor
{
Name = "Article",
Caption = ResourceHelper.GetString(
typeof (DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Article"),
Type = "Article",
ThisKey = "ArticleID",
Comments = string.Empty,
GetClassDescriptor = () =>
Article.StaticClassDescriptor,

}s

new TablePartReferenceDescriptor
{

Name = "TablePartEntry",

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_TablePartEntry"),

Type = "DocumentTablePart",

ThisKey = "TablePartEntryID",

Comments = "Table part entry",

GetClassDescriptor = () =>
DocumentTablePart.StaticClassDescriptor,

1

new TablePartReferenceDescriptor

{

Name = "Document",

© 2018 Ultimate

130

Developer

S
S
¥s

}

ULTRAATE

SOLID

Caption = ResourceHelper.GetString(
typeof(DocumentNameTablePartRow).Assembly,
"Ultima.Metadata.Classes.Resources"”,
"DocumentNameTablePartRow_Document™),

Type = "Document",
ThisKey = "DocumentID",
Comments = "Document”,

GetClassDescriptor = () =>
Document.StaticClassDescriptor,

Each generated class has static property StaticClassDescriptor of type IClassDescriptor. While referring to
this property, all properties of the class can be obtained, to which columns they are displayed and so on.
The descriptors are detailed in the section Class descriptors.

The field of type EditableValue<T> corresponds to each property of table part record, where T is one of
types indicated in metadata: Class EditableValue<T>implements the following interfaces:

e [Serializable;

ICloneable;
IRevertibleChangeTracking;
IEditableObject;

type.

Classes descriptors

IEquatable<T> ensures a possibility for comparison of current object with specified object of the same

Each generated class of metadata has static property StaticClassDescriptor of type IClassDescriptor. While
referring to this property, all properties of the class can be obtained, to which columns they are

displayed and so on.

The following hierarchy of descriptors is implemented to facilitate the work:

L} BaseDescriptor
=- & ClassDescriptor
=- 5 DictionaryDescriptor
=- 5 DocumentDescriptor
=- & LinkTableDescriptor
=- & TablePartDescriptor
=- 5 TotalDescriptor
EF ScalarPropertyDescriptor
=- & DictionaryPropertyDescriptor

e- £ DocumentPropertyDescriptor

=- 5 LinkTablePropertyDescriptor
=- EF TablePartPropertyDescriptor
=- £ TotalDimensionDescriptor
=- & TotalVariableDescriptor

=- EF ReferencePropertyDescriptor
=- EF DictionaryReferenceDescriptor
=- ZF DocumentReferenceDescriptor
=- & LinkTableReferenceDescriptor

=- 5F TablePartReferenceDescriptor

=]

© 2018 Ultimate

131

ULTRAATE

Developer SOLIn

=

- EF ListPropertyDescriptor

=- EF DictionarylistDescriptor
=- & DictionaryLinkTableDescriptor
=- & DocumentTablePartDescriptor

T BaseDescriptor —base descriptor describing the class, has the following properties:

ID, type long —class ID;

Name, type string — class name;

Caption, type string — class caption;

Comments, type string —comments to the class.

F ClassDescriptor describes the class, is inherited from the base class BaseDescriptor, has the following
properties:

TableName, type string —name of object table in the database;

MapObjectName, type string —name of table view in the database;

IsKernel, type boolindicates if the class is kernel (system) one;

Icon, type Image —icon of class command;

Largelcon, type Image —big icon of class command;

IconName, type string —a name of the icon of class command;

LargelconName, type string —a name of big icon of class command,;
Implementedinterfaces, type IList<string>—a list of interfaces implemented with the class;
FilterProperties, type IList<string>—a list of properties displayed in the panel of the filter of dictionary
list form;

Guid, type Guid —GUID of the class;

DisplayFormat, type string returns the format to display object record in the string form.

ZEF DictionaryDescriptor describes the class of dictionary record, is inherited from the class
ClassDescriptor, has the following properties:

SequenceName, type string —name of Sequence-table of the class in the database;
NotificationEnabled, type bool indicates if DictionaryManager must distribute notifications in case of
data change in the dictionary;

IsCached, type boolindicates if the class data must be cached on the client side;
TransparentTranslation, type boolindicates if the dictionary must be translated transparently (on the
fly);

DefaultSearchProperty, type string —a property, by which a search is carried out in the dictionary list
form and control elements;

ParentProperty, type string —a name of the property, by which a tree is built in tree-like dictionary;
IsTree, type boolindicates that the dictionary is tree-like;

DefaultLookupProperties, type List<string>—a format to display dictionary record in the string form;
DisplayFormat, type string returns the format to display dictionary record in the string form.

LI DocumentDescriptor describes the document class, is inherited from the class ClassDescriptor, has the
following properties:

SequenceName, type string —name of Sequence-table of the class in the database;
DisplayFormat, type string returns the format for document display in the string form.

L} LinkTableDescriptor describes the link table class, is inherited from the class ClassDescriptor.

L TablePartDescriptor describes the table part class, is inherited from the class ClassDescriptor:

SequenceName, type string —name of Sequence-table of the class in the database;
DisplayFormat, type string returns the format to display table partin the string form.

F TotalDescriptor describes the total transaction class, is inherited from the class ClassDescriptor:

TransactionTableName, type string —a name of the total transaction class table in the database;
BalanceTableName, type string —a name of total balance class table in the database;

© 2018 Ultimate 132

ULTRAATE

Developer SOLIn

e DetailedTransactionTableName, type string —a name of total detailed transaction class table in the
database;

e TotalTableName, type string —a name of total class table in the database;

e TemporaryTransactionTableName, type string —a name of total temporary transaction class table in
the database;

e TransactionViewName, type string —a name of total transaction class table view in the database;

e DetailedTransactionViewName, type string —a name of total detailed transaction class table view in
the database;

e TemporaryTransactionViewName, type string —a name of total temporary transaction class table view
in the database;

e TransactionType, type Type —a type of total transaction class;

e BalanceType, type Type —a type of total balance class;

e DetailedTransactionType, type Type —a type of total detailed transaction class;

e /sDoubleEntry, type boolindicates if the double-entry rule is used;

e /sOperational, type boolindicates if the total transaction is operational;

e UseBalanceTable, type boolindicates if the total has a table of operational balance.

L} ScalarPropertyDescriptor describes the scalar properties of the class, is inherited from the base class
BaseDescriptor, has the following properties:

e Type, type PropertyTypes returns the type of scalar property of generated class (see details in the
section Data types);

ColumnName, type string returns the table field name in the database;

DefaultValue, type string returns the default value of the property;

StringSize, type int returns the maximum size of the property of string type;

IsPrimaryKey, type boolindicates if the property is a part of the primary key;

IsRequired, type boolindicates if the property is mandatory to be filled in;

IsSystemProperty, type bool indicates if the property is system one.

5} DictionaryPropertyDescriptor describes scalar properties of the dictionary record class, is inherited

from the class ScalarPropertyDescriptor, has the following properties:

e /sRequired, type bool indicates if the property is mandatory to be filled in, assumes always the value
true, if the property is a part of primary key (/sPrimaryKey has the value true);

e |sPrimaryKey, type bool indicates if the property is a part of primary key, assumes always the value
true, if the property is ID (it has the name ID of type long);

e /sTranslatable, type boolindicates if the property is translatable (multilanguage).

ZEF DocumentPropertyDescriptor describes scalar properties of document class, is inherited from the

class ScalarPropertyDescriptor, has the following properties:

e /sRequired, type bool indicates if the property is mandatory to be filled in, assumes always the value
true, if the property is a part of primary key (/sPrimaryKey has the value true);

e |sPrimaryKey, type bool indicates if the property is a part of primary key, assumes always the value
true, if the property is ID (it has the name ID of type long);

e /sMultilanguage, type boolindicates if the property is translatable (multilanguage);

e |sSystemProperty, type boolindicates if the property is system one.

L} LinkTablePropertyDescriptor describes scalar properties of the link table record class, is inherited
from the class ScalarPropertyDescriptor.

ZEF TablePartPropertyDescriptor describes scalar properties of the table part record class, is inherited

from the class ScalarPropertyDescriptor, has the following properties:

e /sRequired, type bool indicates if the property is mandatory to be filled in, assumes always the value
true, if the property is a part of primary key (/sPrimaryKey has the value true);

e |sPrimaryKey, type bool indicates if the property is a part of primary key, assumes always the value
true, if the property is ID (it has the name ID of type long);

© 2018 Ultimate 133

ULTRAATE

Developer SOLIn

e sVisible, type boolindicates if the property is visible (in the document);
e |sSystemProperty, type boolindicates if the property is system one.

[} TablePartPropertyDescriptor describes scalar properties of the table part record class, is inherited

from the class ScalarPropertyDescriptor, has the following properties:

e /sRequired, type bool indicates if the property is mandatory to be filled in, assumes always the value
true, if the property is a part of primary key (/sPrimaryKey has the value true);

e |sPrimaryKey, type bool indicates if the property is a part of primary key, assumes always the value
true, if the property is ID (it has the name ID of type long);

e /sVisible, type boolindicates if the property is visible (in the document);

e |sSystemProperty, type boolindicates if the property is system one.

L} TotalDimensionDescriptor describes properties-dimensions of the total transaction class, is inherited
from the class ScalarPropertyDescriptor, has the following properties:
e |sOperational, type boolindicates if the dimension is operational.

ZF TotalVariableDescriptor describes properties-variables of the total transaction class, is inherited from
the base class BaseDescriptor, has the following properties:
e [sOperational, type boolindicates if the variable is operational.

ZEF ReferencePropertyDescriptor describes the properties of the class of non-scalar types (being
references to other classes), is inherited from the base class BaseDescriptor, has the following
properties:

e Type, type string returns the type of generated class property;

e ThisKey, type string —a name of scalar property, which this reference property is assigned to;

e /sAssociation, type bool returns true, if ThisKey is filled in.

' DictionaryReferenceDescriptor describes the properties of the dictionary record class of non-scalar
types (being references to other classes), is inherited from the class ReferencePropertyDescriptor, has
the following properties:

e ReferencedDictionarylID, type long —dictionary ID, which the property refers to.

ZEF DocumentReferenceDescriptor describes the properties of the document class of non-scalar types
(being references to other classes), is inherited from the class ReferencePropertyDescriptor, has the
following properties:

e ReferencedDictionarylID, type long —dictionary ID, which the property refers to.

ZF LinkTableReferenceDescriptor describes the properties of the link table record class of non-scalar
types (being references to other classes), is inherited from the class ReferencePropertyDescriptor, has
the following properties:

e ReferencedDictionarylD, type long —dictionary ID, which the property refers to.

ZEF TablePartReferenceDescriptor describes the properties of the table part record class of non-scalar
types (being references to other classes), is inherited from the class ReferencePropertyDescriptor, has
the following properties:

e ReferencedDictionarylD, type long —dictionary ID, which the property refers to.

E} ListPropertyDescriptor describes enclosed collection of the class, is inherited from the base class
BaseDescriptor, has the following properties:

e Type, type string returns the type of generated class property;

e ThisKey, type string —a name of scalar property, which this reference property is assigned to;

e [sAssociation, type bool returns true, if ThisKey is filled in.

© 2018 Ultimate 134

ULTRAATE

Developer SOLIn

ZF DictionaryListDescriptor describes enclosed collection of the class of dictionary record, is inherited
from the class ListPropertyDescriptor.

L} DictionaryLinkTableDescriptor describes the link table of dictionary class, is inherited from the class
ListPropertyDescriptor.

ZEF DocumentTablePartDescriptor describes the table part of document class, is inherited from the class
ListPropertyDescriptor.

Scripts

—
(G

.,J;.I.u The list of all scripts can be found in the dictionary "Scripts":

LT Scripts o B =
4 = 4 LS - | [& | & B & +4 Filters &
Mame - Identity Mame Script type 3
v (AN v 5853 ArtideService Service =

Dictionary list commands 27363 CachedDocumentManager Service
Custor ts
ustam repor 11362 EmployeeService Service
» Mobile services)
= 7730 FeatureService Service
> User commands
> Print forms V
¥ Services 17 | namespace Ultima.Scripting ~
» Interfaces 18044
Column providers 19 public partial class ArticleService
Document transactions 2@ {
Tasks 21 #region imported services
> Web services 22
3 [ort]
et 2 Erivate TLinkTablen LinkTableM [get; set
- rivate inkTableManager LinkTableManager { get; set;
Document transaction validators P ' nag ' nag L Eet i) v
< >
% Dictinnary momman: s

The dictionary window is divided into two parts: on the left the tree of groups of scripts is displayed
(which in this form can only be edited, but not be deleted or created), on the right —the list of scripts of
the group chosen on the left. Click of the key button ZF of a toolbar it is possible to switch on and off the
preview of the script chosen in the list..

Scripts, which code errors are noticed are highlighted in the list in orange.

Records of the dictionary can be filtered by the Name of the script (Name) and by its text and
parameters by means of the advanced filter (Advanced filter):
e Full text search —the script contains full -

compliance to the searched text;

. i Full-text search | In scripts text
e All of the words —the script contains all T S
the searched words;
At least one word In resources

e At least one word —the script contains at
|least one of the searched words;

e Does not contain words — the script does |/
not contain any of searched words;

e Tag —the script is marked with the tag.

e In scripts text —search in the text of scripts is carried out with the set flag;

e |n descriptions —search in the descriptions of scripts is carried out with the set flag;

e In resources —search in the resources of scripts is carried out with the set flag.

Does not contain words

Tag Apply filter

© 2018 Ultimate 135

ULTRAATE

Developer SOLIn

The filter is applied by clicking the key button "Apply filter". Lines with the found text (only for Full text
search option) are highlighted in the form of a script preview:

LT Seripts o B &8
4 | & & o, | [Ful-text: IEnumerable... |~ | |&F| ' B 2 < Filters i@
Mame - Identity Name - | Script type
v (Al 5853 ArticleService Service
Dictionary list commands 2 5851 i1ArticleService { Interface

Custom reports

» Mobile services
> User commands
5 Print forms ig void SaveArticle(Article article, LinkTable<aArticlePhoto> photos);
v serviees 24 /// <summary>
Finances 25 //{ Gets additional columns for the article List.
Sticker drivers 26 1/ </summary>
> Store 27 IEnumerable<AdditionalColumn> GetArticlelistcColumns();
MarketingActions 28
Production 29 void CheckarticleStoreCells(IEnumerable<ArticleStoreCell> articleStore
TwinTest 30
3 Test 31 [{{ <summary> —
*||< 4

WWarrants

¥

Besides the dictionary of scripts the script can be opened:

e from the form of editing of its main part;

e from alist form of its main part, selected an item Edit script in a context menu, available by the right-
click on the chosen record of the list form:

’E{e} Services = =R
]

e 7 & & e F & Q Q =
Name Identity Name -
v Services b 5852§Arﬁde5ervice N

Deliver di . #y Edit
¥ predicates 6034 StockService
Fi Delete
nances 6082 BenchmarkUserRolesService @
Sticker drivers = —
Store 7232 PurchaseValidationService L& Edit seript :
7233 BarcodeService A

7385 PricelistExcelCommaonService

The name of its class and the identifier is displayed in the form heading of the script. All properties of
the script are grouped in the form of editing in tabs:

I# ArtideService, 5853 o B O
+«E Scripts: 58353 [E» & Check source 4« = Gotoline Current Element | %% ArtideService hd oK Save Cancel
Scripttext | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)

12 using Ultima.Metadata.Totals; ~
13

14 namespace Ultima.Scripting

1507

16 public partial class ArticleService

17 {

18 #region imported services

19

28 [Import]

21 private ILinkTableManager LinkTableManager { get; set; }

22

23 #endregion

24

25 // sample constant usage

26 //private const long InitialSubtype = SaleDocument.Subtypes.Reserve;

27

28 #region IArticleService

29

38 public void SaveArticle(Article article, LinkTable<ArticlePhoto> photes) v
< >
Errors ‘ Properties || Find all || Versions history || Changes history ‘

Besides the identifier of an open script, the elements of management are located in the heading of
script editing form, oriented to work with these tabs "Script text":
e key button [Z* — opens the form of editing of the main part of the script, corresponding to the type
(Type) of the script:
= Custom report—user report on a total;
= Dictionary command —command over the dictionary record;
= Dictionary event handler —form of dictionary editing;
® Dictionary list command — command over the dictionary records;

© 2018 Ultimate 136

Developer

= Document command —command over the document;

ULTRAATE

SOLID

= Document event handler—editing form of the document type;

= Document list command —command over the documents;

= |nterface —interface;
= Print form —print form;

= Report column provider —editing form of the dictionary;

= Service —service;

= Task —task;

= Total driver —total driver;

= Total event handler —form of total editing;

= Transactions —editing form of the document type;

® Transactions validators —form of total editing;

= User command —user command;

= Web service —web service.

by clicking the arrow to the right of the key button
B+ - an information panel is opened in which
additional data on the script and its main part are
displayed. For example, for scripts of carrying there is a
list of subtypes in which this script of carrying is
included. By double left-click on the line of the list the
name of the subtype is copied to the clipboard as
DocumentName.Subtypes.SubtypeName.

A list of script parameters is displayed for interactive
commands and print forms. By double left-click on the
line of the list the parameter name (in quotation
marks) is copied to the clipboard;

= the icon will inform about the absence of errors found

during the verification of the script code &;

® the following icon will inform about existence of the
changes brought into the script code and untested changes ‘

B+ ~

Script type 13 Document transaction script

Document type | 4020 Purchases
Display name AgentDebt -= Stock

Active subtypes |TookOnCharge: Took on charge
Overage: Overage
Defect: Defect

Double-didk to

copy subtype
name

b4

B+ ~

Script type (26 User command

Parent 6695 Test Command

Parameters |Sample: Decmal
Grumble: String
Mumble: Long

Double-dick

parameter

to copy

b4

the "Check source" key button - check the script code for existence of the errors:

[# SampleService, 66569

‘ [Scripts: 6669 [El+

& Check source

[# SampleService, 6569 [changed]

+[Scripts: 6669 [E+

1) Check source

Click on the "Check source" key button with such icon generates and compiles the script. At the
same time editing of the script text and its resources is not available;

© 2018 Ultimate

137

ULTRAATE

Developer SOLIn

= finally, the icon will inform about the errors found during | z sampleserice, ses
the verification of the script code €3. At the same time, the
found errors will be displayed in the lower part of the form
at the pop-up window:

‘ [Seripts: 6669 [El+ €3 Check source

16 | public partial class ArticleService
Errors = s
Text Line Column Is Warning e
b m:,' expected 43 29 L
C51515 Invalid token '{ in dass, struct, or interface member dedaration 43 35 3
C51515 Invalid token '{ in dass, struct, or interface member dedaration 43 44
C51515 Invalid token (' in dass, struct, or interface member dedaration 43 75
C51518 Expected dass, delegate, enum, interface, or struct 53 18 -

| Errors | | Properties | | Find all | | Versions history | | Changes history |

Double left-click on the error leads to the positioning of the cursor on the line of the script to this
error.

The text of the chosen error can be copied through the context menu, available by right-click or by
pressing of a combination of keys |t +|C

12 using Ultima.Metadata.Totals
13 using Ultima.Server.Data;

Errors = Ed

Text Line Column Is...

» C51002 expected ; 1z 29

¥ Copy CtrI+C|: I

| Errors | | Properties | | Find all | | Versiong history | | Changes history |

The error window can be opened at any time by left-click on the "Errors" key button in the lower left
corner of the script editing form. Thus, the error window is automatically hidden, when you click the
mouse in any area outside of it. In order to the error window will not be hidden, it should be fixed
|,
When mouseover at the "Errors" key button (without click) the error window will be opened, but
will automatically disappear as soon as the mouse cursor leaves the "Errors" key button or an area of
the error window;
e key buttons 4= and = —allow moving back and forth respectively in the script text on a history of cursor
positions;
e a control element "Go to line" allows passing to the set line of the script code. For transition it is
necessary to add a line number into a text field and to click the key |Enterl;
e acontrol element "Current element" performs two functions:
= |t displays on which element of the script code the cursor is set at the moment;
= allows passing to the chosen code element:
“t¢ SampleDictionaryCommands43 -

“t¢ SampleDictionaryCommand&43
w Execute{long recordID, IDictionary<string, object=> parameters, IList<ClientAction> dientActions)

© 2018 Ultimate 138

ULTRAATE

Developer SOLIn

N Atthe tab "Script text" there is an editor of the script code. In the right area of the editor the field of

navigation it is placed, showing which part of the script is located on the screen:

e the "Properties" key button in the lower left corner of the edit form - opens a pop-up window below
the script properties:

16| public partial class ArticleService e WP —
Properties B X
Name SampleDictionaryCommands43 Auto align assignments
Type Dictionary command | Highlight current line
Group Dictionary commands
Generator Data g
References Al = | Macros: {ServerFolderMName}, {AssembliesFolderMama}

| Errors || Properties | | Find all | | Versions history | | Changes history |

= Name —script name is automatically assigned, and coincides with the class name of the script;
= Type —script type is assigned automatically when creating a script;

= Group —a group, which the script belongs to, is set in the main part of the script;

= Generator data —an additional script parameter, used in its generated part;

= Reference —additional assembly (external libraries), used by the script:

16 | public partial class ArticleService rra—

Properties B X
MName SampleDictionaryCommands43
Type Dictionary command
Group Dictionary commands
Generator Data -
References Al -

UlﬁmalLib il
’m l?peri TestLib.dll —|
—— QK Cancel

The listed libraries have to be in GAC (information about Global Assembly Cache can be found on
the website =+ eng/rus), or in the specified directory ServerFolderName of the application server;
= Auto align assignments — with the set flag there is an automatic alignment of the variables
initialized in the script code;
= Highlight current line —with the set flag the current line is highlighted in the editor;
Thus, the property window is automatically hidden, when you click the mouse in any area outside of
it. In order to the property window will not be hidden, it should be fixed |+ .
When mouseover at the “Properties” key button (without click) the error window will be opened, but
will be automatically hidden as soon as the mouse cursor leaves the “Properties” key button or an
area of the property window;
e the “Find all” key button in the lower left corner of the edit form - opens a pop-up window of search
in the script text below:

16 | public partial class ArticleService [
Find all a X
name Find all Match case Match whole word Use Regular Expressions
Line Position String
10 0 namespace Ultima. Scripting
17 19 {ff <param name="recordID" =Dictionary record ID. < /param=
i8 9 {ff <param name ="parameters">Command parameters. < /param:>
19 19 {I| <param name ="dientActions">Client actions. < fparam=
| Errors || Properties | | Find all | | Versions history | | Changes history |

The search options, established by flags from the right of the "Find all" key button, allow to search:

© 2018 Ultimate 139

http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/ru-ru/library/yf1d93sz.aspx

ULTRAATE

Developer SOLIn

e Match case — match case;

e Match whole word —only the whole word;

e Use Regular Expressions — using regular expressions.

Double left-click on the search result leads to the positioning of the cursor on the line of the script
with the found fragment.

Thus, the search window is automatically hidden, when you click the mouse in any area outside of it.
In order to the search window will not be hidden, it should be fixed |+=/|.

When mouseover at the “Find all” key button (without click) the search window will be opened, but
will be automatically hidden as soon as the mouse cursor leaves the “Find all” key button or an area of
the search window;

the “Versions history” key button in the lower left corner of the edit form - opens a pop-up window
with the script change history from version to version in the configuration branch, marked by the tag
(branch or usual) chosen in the field Branch or tag:

16 | public partial class ArticleService

Versions history a X

Branch or tag: |1 + o« ||Default: #3568

Load Version ID | Version Comments

| Errors | | Properties | | Find all | | Versions history | | Changes history |

16 | public partial class ArticleService
Versions history a X
Branch or tag: |1 + o« ||Default: #3568
Load Version ID | Version Comments 4 | |andry: 29.11.2012 12:10:43
— || | Some comment for the version 1.
andry: 29.11.2012 12:10:43 =
andry: 29.11.2012 12:10:45
4 andry: 29.11,2012 12:12:28
£ mmdeas 044 04T AT AT IT i
| Errors | | Properties | | Find all | | Versions history | | Changes history |
1
1

Script text | Resources | Generated Text (read-only) | Generated Resx {read-only) | MEF Cache (read-only) | Version 1 X
1 using System; ~
2 | using System.Collections.Generic;

3 using System.ComponentModel.Composition;

e T

s
The history of changes according to versions is loaded by left-click on the "Load" key button. The latest
version of the script in the current version of the configuration, opened in the "Script" tab, is also
presentin the history of changes.

The double left-click on the script leads to its opening in a new tab with the corresponding heading.

© 2018 Ultimate 140

ULTRAATE

Developer SOLIn

If to highlight, holding the Shift or Ctrl key pressed, two versions of the script and to press the "Diff"
key button, it is possible to see the history of changes in details, which will be opened in a new tab
with the corresponding heading:

16 public partial class ArticleService —
Versions history B X
Branch or tag: |1 v == Default: #368
Load Version ID | Version Comments | |andry: 29.11.2012 12:12:42

Some comment for the wersion 7.
4 andry: 29.11.2012 12:12:28

- 6 andry: 29112012 12:12:37 3
EBlame 7iandry: 29.11.2012 12:12:42
=
Errors ‘ Properties || Find all || Versions history || Changes history |
1
1
Script text | Resources | Generated Text {read-only) | Generated Resx (read-only) | MEF Cache (read-only) = Versions diff: 4-7 X
= 4 # —|[~[+]| Ln54, Col1
» |49 someMessage = string.Empty; -
47 50
48 return datar 51 return data;
49 } 52 3
53
54 /*public override PrintFormData GetData(IDictionaryRecord
55 {
=| |58 return new PrintFormData ("Report™) E
a7 i
-~ | 58 new { Name = "John", LastName = "Cleese" } =
< [Il o 3 B [] b
| S54|-------- /*public -override -PrintFormData -GetData (IDictionaryRecord -record, -IDictionary<string, -object> -parameters)

In the lower part of the tab of the history of changes for the versions two versions of the line are
shown for comparison, on which the cursor is set:

= |ight green highlights the changed lines;

= purple highlights a deleted text;

= blue highlights an added text.

If to highlight, holding the Shift or Ctrl key pressed, two and more versions of the script and to press
the "Blame" key button, it is possible to see the changes that were made to the script in a new tab
with the corresponding heading in what version of a configuration:

16| public partial class ArticleService A
Versions history - x
Branch or tag: |1 - |--- |\ Default: #3568
Load Version ID | Version Comments 4 | andry: 29.11.2012 12:12:42

Some comment for the version 7,
4 andry: 29.11.2012 12:12:28

6 andry: 29,11,2012 12:12:37

Blame 7iandry: 29.11.2012 12:12:42 =
Errors ‘Prnperﬁes || Find all || Versions history ||Changes history |
1
1
v
Script text | Resources | Generated Text {read-only) | Generated Resx (read-only) | MEF Cache (read-only) | Versionsblame: 4-7 X
52| [2/28/2015] 1@568 joss, xpoft, andry, alexey.petrov ~
53 || [2/28/2815] 18568 joss, xpoft, andry, alexey.petrov [Import]
54 | [2/28/2815] 18568 joss, xpoft, andry, alexey.petrov private IPrintManager PrintManager { get;
55| [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov
56 | [2/18/2@15] 9986 xpoft, joss, andry, alexey.petrov public IDList GetClaimsToReturn(long clain
570 [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov
58| [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov var query =
50 | [2/18/2015] 9986 xpoft, joss, andry, alexey.petrov from tb in DataContext.GetTable<cC]
60| [2/18/2@15] 29986 xpoft, joss, andry, alexey.petrov where tb.Claim.ClaimantID == clain
61| [2/18/2@815] 9986 xpoft, joss, andry, alexey.petrov select tb.ClaimID;
62 | [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov
63| [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov return query.ToIDList();
64 | [2/18/2@15] 9936 xpoft, joss, andry, alexey.petrov T
65| [2/4/2@15] 9952 yallie, andry, demo, xpoft
66| [2/18/2815] 9986 xpoft, joss, andry, alexey.petrov public Claim FindClaim(string serialNumber
67 [2/2/2@15] 29382 yallie, joss, andry, xpoft
< >

For every line of the script the number of configuration is specified, when operating the changes were
made in it.

The pop-up window of the history of changes according to versions is automatically hidden, when you
click the mouse in any area outside of it. In order to the change history window will not be hidden, it
should be fixed |+|.

© 2018 Ultimate 141

ULTRAATE

Developer SOLIn

When mouseover at the “Versions history” key button (without click) the window of change history
according to versions will be opened, but will be automatically hidden as soon as the mouse cursor
leaves the “Versions history” key button or an area of the window of change history according to
versions;

e the "Changes history" key button in the lower left corner of the edit form - opens a pop-up window

with the of the script history changes at the current version of the configuration (with which the client
application works):

16 | public partial class ArticleService

Changes history

Time User Login

| Errars | | Properties | | Find all | | Versions history | | Changes history |

16 | public partial class ArticleService

Changes history

Time User Login
U 11372012 12:30:50 PM root
U 11f27/2012 12:30:59 FM root Ib

| Errars | | Properties | | Find all | | Versions history | | Changes history |

v

Script text | Resources | Generated Text (read-only) | Generated Resx {read-only) | MEF Cache (read-only) | root: 11/27/2012 12:30:50 PM X
1 using System; »
2 using System.Collections.Generic;

3 using System.ComponentModel.Composition;

\cine Suoctam Drawino:

p
N

s
The history of changes is loaded by left-click on the "Load" key button. The last saved version of the
script, opened in the "Script" tab, is also presentin the history of changes.

The double left-click on the script leads to its opening in a new tab with the corresponding heading.

© 2018 Ultimate 142

ULTRAATE

Developer SOLIn

If to highlight, holding the Shift or Ctrl key pressed, two versions of the script and to press the "Diff"
key button, it is possible to see the history of changes in details, which will be opened in a new tab
with the corresponding heading:

16 public partial class ArticleService

Changes history o

Load Time User Login -
11/29/2012 5:57:47 PM root

root

iff l} :
e U 12/3/2012 3:45:06PM oot

A m

Errors ‘ Properties || Find all || Versions history || Changes history |
1
1
Script text | Resources | Generated Text {read-only) | Generated Resx (read-only) | MEF Cache (read-only) | Changes diff root: 11/28/2012 5:57:47 PM - 12/3/2012 3:44:57PM X
+ #A) —||~||+||Ln12 Col1
o9 -~ |08 -
10 namespace Ultima.Scripting 10 namespace Ultima.Scripting
11 |{ 11 ({
1z public partial class SampleDictionaryCommandé43 1z public partial class ExecuteUserCommand
13 i 13 {
14 ff/ <summary> Ell1a /// <summary> =
15 /// Executes user command script. 15 /// Executes user command script.
16 [/ </summary> 16 /A </summary>
17 /// <param name="recordID">Dicticonary record ID.</param> i7 /// <param name="recordID">Dicticnary record ID.</param>
18 /// <param name="parameters">Command parameters.</param> . |18 /// <param name="parameters">Command parameters.</param> .
< — [' 3 < - m r
12 ----public-partial -class -SampleDictionaryCommand643
12 - ---public -partial -class -ExecuteUserCommand

In the lower part of the tab of the history of changes two versions of the line are shown for
comparison, on which the cursor is set:

= light green highlights the changed lines;

= purple highlights a deleted text;

= blue highlights an added text.

If to highlight, holding the Shift or Ctrl key pressed, two and more versions of the script and to press
the “Blame” key button, it is possible to see who and when made the changes in the script in a new
tab with the corresponding heading:

16| public partial class ArticleService
Changes history a x
Load Time User Login -
U 11/29/2012 5:57:47 PM root
Diff e

f7) 12/3/2012 3:44:57 PM root
U 12/3/20123:45:06PM root

A m

Blame %

Errors || Properties || Find all || versions history | | changes history |

A\

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only) = Changes blame: 11/29/2012 5:57:47 PM - 12/3/2012 3:44:57PM X
59 12/3/2@13 7:18:11 PM root return new List<AdditionalColumn> -
517712/3/2013 7:18:11 PM root

52 12/3/2@13 7:18:11 PM root new AdditionalColumn { Name = "SaleSpeed”, Caption = "CkopocTb
53 12/3/2013 7:18:11 PM root new AdditionalColumn { Name = "Price_1", Caption = "UeHw.OnT",
54 12/3/2013 7:18:11 PM root new AdditionalColumn { Name = "Price_2", Caption = "UeHu.Menkn
5512/3/2@13 7:18:11 PM root new AdditionalColumn { Name = "Price_3", Caption = "LeHu.Po3Hu
56 12/3/2@13 7:18:56 PM root new AdditionalColumn { Name = "Remains_1", caption = "OcTaTkn.
5712/3/2013 7:18:56 PM root new AdditionalColumn { Name = "Remains_2", Caption = "OctaTkw.
58| 12/3/2@13 7:18:11 PM root new AdditionalColumn { Name = "Remains_3", Caption = "OcTaTkw.
59 12/3/2@13 7:18:11 PM root new AdditienalColumn { Name = "IncomeStockRemains", Caption =
68 | 12/3/2013 7:18:11 PM root }s

61| 12/3/20813 7:18:11 PM root }

62 12/3/2013 7:18:11 PM root

63 12/3/2013 7:18:11 PM root

64 12/3/2013 7:18:11 PM root itional data for the article list. v
T P e
< > E P

Each line of the script has the date of the introduction of changes and under what user they weré
made.

The pop-up window of the history of changes is automatically hidden, when you click the mouse in
any area outside of it. In order to the change history window will not be hidden, it should be fixed |+|.
When mouseover at the “Changes history” key button (without click) the window of change history
will be opened, but will be automatically hidden as soon as the mouse cursor leaves the “Changes
history” key button or an area of the window of change history.

© 2018 Ultimate 143

ULTRAATE

Developer SOLIn

=izl The editor of the script is realized in the following functionality and the following hot keys are
supported:

e |Cnl | +|F | —search dialog;

F3 —to find the following occurrence of a required fragment (at the closed search dialog window);

Cul + |0 —to return standard font size (font size is changed by the rotation of a mouse wheel when
pressing the key button |Cl|);

e |Cul|+| B —tosetabreakpoint (breakpoint);

e |Cul | +| N —to passto the next line with the set breakpoint;
® |[Cul | +|Shiitl +| M —to pass to the previous line with the set breakpoint;
® |[Chl | +|Shiit +| B —to remove the breakpoint;
e |Cul |+ |G| —to pass to the specified line;
e |Cul|+|H —toopen the dialog of search and replacement;
e |Chl +|| —automatic space:
-53 fuar primaryDocument = DocumentManager.GetDocument(reguestDocument.OriginalDocumentID);
54 var helper = GetHelper(primaryDocument);
55 var problemDocuments = SeparateProblemArticles(requestDocument, primaryDocument);
Chl +1 1
_53 fuar' primaryDocument = DocumentManager.GetDocument({requestDocument.OriginalDocumentID);
54 var helper = GetHelper(primaryDocument);
55 var problemDocuments = SeparateProblemirticles{requestDocument, primaryDocument);
e |Cul|+|M or|Cul|+|. —use of technology IntelliSense:
58 var doc = new _isthZCkJr51t>(); Chrl |+ 1 éa var doc = new _istuIZCkJr91t>{);
61 doc.Add(requestDocument); 61 doc.Add(reguestDocu %¢/IDogument
62 doc.Add(primaryDocument); 62 doc.Add(primaryDocu %2 IDocumentCommand
63 doc.AddRange(problemDocuments); Gl +. 63 doc.AddRange(proble

4 IDacumentCommandManag
“t4 IDocumentEventHandler

“14 IDocumentListCommand
¢ IDocumentListCommandMa

“i4 IDocumentManager
4 IDocumentManagerExtensio

“14 IDocumentTransactionScript

e |Cul | +| U —totransfer all symbols of the highlighted script fragment to the upper case;

e |[Cul | +|Shiitl + | U —to transfer all symbols of the highlighted script fragment to the lower case;
e |Chl +|Shiftl +| C —to comment the current line / the highlighted lines;

e |Cul|+|M + 0/ —collapse all code blocks.

A In the tab "Resources" there are resources of the script and their value system localized for all
languages:

Script text | Resources | Generated Text (read-only) = Generated Resx (read-only) | MEF Cache (read-only)

= Q,

Resource Mame Caption.ru Caption.en

} | TableMame MocnegHWe 3a3ABKH Recent requests
IDColurmn Kon Identity
DescriptionColumn Onucaxue Description
OfficeMameCalumn Odwmc Office name
FrcMameColumn Lo FRC
CostItemMNameCaolumn CTaTes zaTpat Cost item
AmountColumn Cymma Amount
CommentsColumn MprmMeYaHA Comments

© 2018 Ultimate 144

ULTRAATE

Developer SOLIn

Resources are used if it is necessary to localize elements used in script. For example, if it is necessary to
give a message to the userin his language.

For each of the resources a property will be generated (which can be found in the tab "Generated Text"),
which value will be the text in the user's language.

Resources tab has its own toolbar, which in addition to the creation and deletion of resources allows
filtering by Resource Name property. To filter the resources, supply the search string and click the search
a, button. To reset the filter, clean up the search string and repeat the search.

Resources grid supports copying and pasting the resources via the standard |Cl| + |C|and [Chl| + |V
hotkeys.

There is an example of use of resources for localization of the form generated by the script with the
table in which results of its performance are displayed:

var table = new SlimTable("RecentRequests") { query.ToArray() };
table.TableName = TableName;

table.Columns["ID"].Name = IDColumn;
table.Columns["Description"”].Name = DescriptionColumn;
table.Columns["Comments"].Name = CommentsColumn;
table.Columns["Amount"”].Name = AmountColumn;
table.Columns["OfficeName"].Name = OfficeNameColumn;
table.Columns["FrcName"].Name = FrcNameColumn;
table.Columns["CostItemName"].Name = CostItemNameColumn;

Script resources can be used both in the main class and in auxiliary one:

class MyUserCommand

{
//the localized message from the resources (in the generated part of the script)
internal static string Message {
get { return ResourceManager.GetString(“Message"); } }
public void Execute()
{
//let's take the message resource from the current class
throw new UltimaException(Message);
}
}
class HelperClass
{
void MyMethod()
{
//let's take the resource from the main class in which they are announced
throw new UltimaException(MyUserCommand.Message);
}
}

M Inthe tab "Generated Text" there is a part of the script, automatically generated.

A Inthe tab "Generated Resx" there is a generated code of resource file in the format resx - in the form
in which the compiler will receive it.

A Inthe tab “MEF cache” there is a cache of the library MEF (Managed Extensibility Framework), which
detailed description of which can be found on the website MSDN =+ eng/rus.

© 2018 Ultimate 145

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/ru-ru/library/dd460648.aspx

ULTRAATE

Developer SOLIn

Services and interfaces

In the system Ultimate AEGIS® services are divided according to the destination into:
e Services —ordinary services;

D Dictionary commands &y User commands 82 Total drivers EF all scripts
o MOb//e SerVices - mObile se rViceS; Q Document commands (3 Tasks [éﬂ Customreports |jg§ Tests -
[] Web services —we b-se rvices. List commands ~ [Print forms % Web services | %y Services -
Scripting 9";4 SemicesI}
& Interfaces

%y Mobile services

& Mobile interfaces

Services

H“:%Lj} Services are the scripts realizing the specified interface. They are designed to store frequently
used functionality.. When writing scripts there are often standard tasks which the application developer
should solve time after time. Not to write a code of the same functionality again, developers often copy
it from one script in another. In the situation when the functionality needs to be changed for any reason,
the application developer have a task to find his code by all scripts where it is used, and everywhere to
make the appropriate changes.

Services are also used to implement such standard functionality. Once having written the service for
solving of typical task, you can resort to its functionality, while importing its implemented interface.

[Import]
private IServiceName ServiceName { get; set; }

Importis described in the section Use of Services in details.

The list of all interfaces can be found in the dictionary "Services":

*'u Services = B =
o F & 2 @ F & Q al| @ =@ |~
Name Identity Name =
v Services » 5852 i ArticleService -
)) f # Edit
Delivery predicates 5034 StockService
i Delete
Finances 6082 BenchmarkUserRolesService ©
Sticker drivers = - -
7232 PurchaseValidationService L Edit script
Store
7233 BarcodeService L

7385 PricelistExcelCommonService

The dictionary window is divided into two parts: on the left, there is a tree of service groups, on the
right —the list of service of the group selected on the left.

The dictionary records can be filtered by Service name (Name) and Tags (Tag).

The script of the service selected in the edit form can be opened directly from the dictionary list form,
having selected item Edit script in the context menu.

© 2018 Ultimate 146

ULTRAATE

Developer SOLIn

The interface has the following properties:

B Services, 7238 = B
«[Services: 7238 (] nofiles ~ en oK Save Cancel
Service Interface preview
Name BarcodeService 1| using System; A

- 2 | using System.Collections.Generic;
T [BarcodeService |« |-+« 3| using System.ComponentModel;
Saript Click here to edit the seript... 4 | using System.ComponentModel.Composition;
- 5| using System.Ling;
Friss Services - 6 using System.Text;
Metadata tags 7 ' using System.Threading.Tasks;
8 using Ultima.Metadata;
=]
Developer's comments 18 | namespace Ultima.Scripting
1104
12 public interface IBarcodeService v

e Name — service class name. By default, the service name will be assigned with the interface name
which it is created but without prefix “I”, and with number suffix (to guarantee unigueness of names).
For instance, for interface "lInterfaceName", a service will be created with the name
"InterfaceName1233". The service name can be changed;

e Interface —an interface implemented with the service;

e Script —a link to service script. In case of creation of new service, the script is created automatically
upon its saving. Click on the link Click here to edit the script... during creation of new mobile service
will result saving of the service and its reloading, after that the script edit form will open;

e Folder—a group, which the service belongs to;

e Metadata tags —tags used for description of the service functionality;

e Developer's comments —comments of the application developer;

e Interface preview — a script of the interface implemented with the service. In the right area, the
navigation area is located showing which part of the script is displayed on the screen.

Interfaces

@ Interface — description of interactions of classes. Each service must implement some interface and,
thus, the service becomes available for use. Moreover, one interface can be implemented with several
services.

The list of all interfaces can be found in the dictionary "Interfaces":

& Interfaces o B =
0o P E & o ¢ Q Q| & & -
MName Identity Mame ‘=
w iInterfaces I 5850 IArticdeService
: G & Edit
inances 12785 IFixedAssetService & Delet
Validati Eee
sleation 3255 IDeliveryServicePredicate
Store 5 Edi -
6060 IBenchmarkUserRolesService = it script :\\
11894 ISpellOutService =

7506 IPavmentService

The dictionary window is divided into two parts: on the left, there is a tree of interface groups, on the
right —the list of interface of the group selected on the left.

The dictionary records can be filtered by Interface name (Name) and Tags (Tag).

The script of the interface selected in the edit form can be opened directly from the dictionary list form,
having selected item Edit script in the context menu.

© 2018 Ultimate 147

ULTRAATE

Developer SOLIn

The interface has the following properties:

& Interfaces, 2488 = B

[Interfaces: 2488] nofiles +~ en OK Save Cancel
Interface Services

MName IDeliveryPredicate a S 5 & al| @ = 5 < Filters @
Script Click here to edit the script... -

Identity Mame
Folder Interfaces T 3 2650 EAnoﬂwerDeIiveryPredicate 2 Edit
Metadata tags 2493 DefaultDeliveryPredicate Delet
- elete
rest test
Developer's comments & Edit script

e Name —interface class name. The interface name must have prefix "I", which is added automatically.
Therefore, the entered interface name "NameOfInterface" will be automatically converted into
"INameOfinterface". If necessary, the name can be changed:

(Warning &Jﬁ

Renaming this object will result in cascading update of many other
l ' objects referencing it. Saving the modified object will take a lot of time,
and certain references will not be updated automatically. Proceed with == Name |Objectiiame]

Mame |ObjectName & | == S
renaming?

[ok || cance |

" .

Script —a link to interface script. In case of creation of new interface, the script is created automatically

upon its saving. Click on the link Click here to edit the script... during creation of new interface will

result into saving of the interface and its reloading, after that the script edit form will open;

Folder —a group the interface belongs to;

Metadata tags —tags used for description of the interface functionality;

Developer's comments —comments of the application developer;

Services —a list of services implementing particular interface.

The list of services can be filtered by the Service name(Name).

The services can be created £ or removed & using corresponding buttons in the toolbar:

® in case of service creation, its edit form will be opened. By default, the service will be assigned with
the interface name without prefix "I", but with number suffix (to guarantee uniqueness of names).
For instance, for interface "INameOfIinterface", a service will be created with the name
"NameOfinterface1234". The service name can be changed;

" in case of service removal, it will be removed not only from the list of service implementing
particular interface but from dictionary of services.

The service can be opened in the edit form by double-click of the left mouse button onitin the list.

The script of the service selected in the edit form can be opened directly from the list of services,

having selected item Edit script in the context menu.

Mobile services

L"“': For integration with mobile applications, Ultimate AEGIS® system offers the use of mobile
services.

© 2018 Ultimate 148

ULTRAATE

Developer SOLIn

Mobile service implements the specified mobile interface, which describes in turn the classes applied
for interaction of mobile client applications. Moreover, any primitive types of data can be used, which
are available both on mobile application and on application server..

The client mobile application is developed in C# using Xamarin =# http://xamarin.com/ with
employment of mobile interfaces, which are compiled into a separate library mobilemetadata.dll
(ultimalib.dll and mobileinterfaces.dll libraries are required too).

The list of all mobile services can be found in the dictionary "Mobile services":

& Mobile services = B R
0 F 2= & o5 ¢ Q all @ =@ -~
MName Identity MName
Maobile services 3 5969 ‘MabileService
: : # Hdit
7210 MobileStreamTransferService
@ Delete

7822 MerchandiseExpertiseService

15203 MobileStorePickupService LEF Edit script I:
17701 MobileStoreTransferPickupService

12376 StnckbskinnSersics

Dictionary window is divided into two parts: on the left, there is a tree of mobile services groups, on the
right —the list of services of the group selected on the left.

The dictionary records can be filtered by Mobile service class name (Name) and Tags (Tag).

The script of the service selected in the edit form can be opened directly from the dictionary list form,
having selected item Edit script in the context menu.

The mobile service has the following properties:

i Mobile services, 5353 = B
«[Mobile services: 6369] nofiles ~ en oK Save Cancel
MobileService Interface preview
Name MobileService 1| using System;

— - 2 | using System.Collections.Generic;
Interface IMobileArtideService | = == £ 3| using System.ling;
Saript Click here to edit the saript... 4 | using System.Text;
5| using System.Threading.Tasks;
Folder Mobile services > 5
Metadata tags 7 | namespace Ultima.Scripting.Mobile
8L1{
9 public interface IMobileArticleService
Developer's comments 18 {
11 string GetArticleName(long id);
12 }
131

e Name —mobile service class name;

e Interface —an interface implemented with the service;

e Script —a link to service script. In case of creation of new service, the script is created automatically
upon its saving. Click on the link Click here to edit the script... during creation of new mobile service
will result saving of the service and its reloading, after that the script edit form will open;

e Folder—a group, which the service belongs to;

e Metadata tags —tags used for description of the service functionality;

e Developer's comments —comments of the application developer;

e Interface preview — a script of the interface implemented with the service. In the right area, the
navigation area is located showing which part of the script is displayed on the screen.

The mobile services are executed in the protected mode on behalf of the user that logged in the system

© 2018 Ultimate 149

http://xamarin.com/

ULTRAATE

Developer SOLIn

Mobile interfaces

@ Each mobile service must implement some mobile interface and, thus, the service becomes
available for use.

Any primitive types of data, which are available both on mobile application and application server, can
be used in mobile interfaces. Moreover, the metadata classes cannot be referred to.

The list of all mobile interfaces can be found in the dictionary "Mobile interfaces":

& Mobile interfaces o =
0 F & #® o F & Q Q|| & = @E -
MName Identity Mame
Mobile interfaces » 6957 |IMobile ArticleService
i # Edit

7207 IMobileStreamTransferService
Delet
7818 IMerchandiseExpertiseService e Ficte

15200 IMobileStorePickupService Ef Edit script |:
17487 IMobileStoreTransferPickupService

18833 IStocktakinoServire

Dictionary window is divided into two parts: on the left, there is a tree of interface groups, on the right —
the list of interface of the group selected on the left.

The dictionary records can be filtered by Mobile interface name (Name) and Tags (Tag).

The script of the mobile interface selected in the edit form can be opened directly from the dictionary
list form, having selected item Edit script in the context menu.

The mobile interface has the following properties:

@ Mobile interfaces, 68957 = = 22
*[Mobile interfaces: 8957] nofiles = en oK Save Cancel
MobileInterface Services
MName IMobileArtideService [} - 4 all i = 2 <« Filters @
Script Click here to edit the script. .. -
Identity Name
Folder Mabile interfaces - ' 6969 MobileService
Metadata tags
Developer's comments

e Name —mobile interface name. If necessary, it can be changed:

(Warning ﬁﬁ

Renaming this object will result in cascading update of many other
l % objects referencing it. Saving the modified object will take a lot of time,
and certain references will not be updated automatically. Proceed with == Name |Objectiiame]

Mame |ObjectName & | == S
renaming?

[ok || cance |

e Script—alink to interface script. In case of creation of new interface, the script is created automatically
upon its saving. Click on the link Click here to edit the script... during creation of new mobile interface
will result saving of the interface and its reloading, after that the script edit form will open;

e Folder—a group the interface belongs to;

e Metadata tags —tags used for description of the interface functionality;

© 2018 Ultimate 150

ULTRAATE

Developer SOLIn

e Developer's comments —comments of the application developer;

e Services —a list of mobile services implementing particular interface.
The list of services can be filtered by the Name of service (Name).
The services can be added or removed & using corresponding buttons in the toolbar: In case of
service removal, it will be removed not only from the list of service implementing particular interface
but from corresponding dictionary of mobile services.
The service can be opened in the edit form by double-click of the left mouse button on it in the list.

Kernel services

Kernel services are special scripts which are integrated with a kernel and provide additional
functionality for the operations which are built in the system. Kernel services affect on the work not
only applied, but also kernel operations. If mistreated they may disrupt the entire software package,
therefore to work with them is recommended to entrust to the most skilled programmers. These scripts
are:

e Common event handlers of all dictionaries and documents.
e Password quality checking service.
Password quality checking service

By default, the system makes no demands to the quality of the password (except that the password
must be non-empty). To check the quality of the password it is possible to realize a kernel service, which
will measure the quality of the password before its change. To access the service checks the password
quality in the user dictionary there is a special link (edit password quality validator), located next to the
link to change the password:

% Users, 1 = B

[Users: 1] nofiles ~ en & oK Save Cancel

Printers assigned to the user's role
Mame Administrator

i o &) -
Login root
Identity Mame System name Description
Paseword change password edit password quality validator
Password lifetime @) unlimited days

User must change password at next logon

Role 3 = |-+ || Administrator £
Group (folder) 5 - - || System £
UI Template 55 = |-+ ||Root UI 3 (55) £
Default printer e £ X
Language ru b
Time offset (in minutes) 33 2

LEF The interface of the password quality control service IPasswordQualityValidator includes the
following methods:
e GetPasswordQuality (string password) —returns the quality of the transmitted password string on the
following scale:
= None—a blank password (the system does not allow blank passwords);
= Weak —weak password;
= Average —average password;
= Strong —strong password;

© 2018 Ultimate 151

ULTRAATE

Developer SOLIn

® Insane —a password, exceeding requirements to the quality of the password;

e CheckPasswordValidity (string password) —checks whether it is possible to use the specified password
in the system. The object PasswordValidationResult has to be result of the method, having the
following properties:
= /sValid —whether the password meets the system requirements;
= ErrorMessage —a message explaining why the password does not meet the requirements (if it is

necessary).

Web services

For integration with external applications, Ultimate AEGIS® system offers using web services
according to SOAP protocols or with employment of REST API. The application is designed to process
high load and therefore the development tools are specially optimized to create web services with
message-based design. For convenience of external developers, serialization is supported in XML and
JSON. The tools for creation of web services allow describing DTO (Data Transfer Object) in graphic
interface for request and response value. Thus, each web service consists of:

e query class;

e response class;

e itisthe script that receives the query and generates response.

The system hides the routing, serialization and de-serialization tasks from the application developer.

The list of all web services can be found in the dictionary "Web services":

D Web services = B
2 7 & & & Q, Q, Q|| b = 2 < Filters)
Name Identity Marme -
v \Web services 3 10824 CreateClient .
R) I o O stsonli bhstotsimissbnd 2 Edit
Replicator 10835 IsClientExists :

Tests Delete

10840 SignInClientWithEmail .

MobileSignee — . :
Supplier 10853 CreateAgent LF Edit script I:
10897 GetClientInfo

JAEAE Sim Tl e e A S =]

The dictionary window consists of two parts: a tree of the group of web services is displayed to the left,
a list of services selected on the left of the groups is displayed to the right.

The dictionary records can be filtered by Web service class name (Name), its text (Script text) and Tags
(Tag).

Cloning of metadata objects such as dictionaries, link tables, and web services is detailed in the
Metadata cloning section.

The script of the service selected in the edit form can be opened directly from the dictionary list form,
having selected item Edit script in the context menu.

© 2018 Ultimate 152

Developer

The web service has the following properties:

ULTRAATE

SOLID

‘% CreateReserve, 11129

=

= 2R

Web service

Name
Script
Folder
Metadata tags

Developer's comments
Create new reserve

«f Web services: 11120 [z 2

4

CreateReserve
Click here to edit the script...

Web services -

Gitn
& Class code

Parameters | Permissions

Request parameters
-]
Name
Agentld
> Artides
ObtainMethod
ReserveOfficeld

Response parameters
-]
Name
¥ Amount
1d
DeadDate
OutOfStock

oK Save -

Type Is array Developer's comments
long?

ArticleInfo u’

string

long

Type Iz array Developer's comments
dedmal

long

DateTime

boal

Web service returns list of response dass instances

Cancel

4

4

4

4

Name —web service class name;
Script — a link to web service script. In case of creation of new service, the script is created

automatically upon its saving;

Folder —a group, which the web service belongs to. Click on the link Click here to edit the script... during

creation of web service will result saving of the service and its reloading, after that the script edit form

will open;

= Name —parameter name;

= Type —parameter type, POCO types (Plain Old CLR Object) can be
used as the value — primitive CLR types, dates, terms. The type
can be selected from existing ones or entered manually;

= /s array —the parameter can be an array of specified type, if this

flagis set;

Metadata tags —tags used for description of the web service functionality;
Developer's comments —comments of the application developer;
Request parameters — parameters of (DTO) request:

Name

w Delivery
Timeld
LogisticCompanyCost
Comments
ContactPhone

Finfion

= Developer's comments —comments of the application developer;
e Response parameters — parameters of (DTO) response response. Their features are similar to query

parameters.

Type

Is array

boal

long
string
Isi)abe'l'lme

Hrinn

Parameters of query and response can have complex nested structure. If parameter has child
parameters, separate nested class will be generate. To create children parameter you need select a
parent parameter and click “I£ in the toolbar of parameters.

In case of removing parent parameter, all child parameters will be removed.
Parameters can be copied and pasted using the familiar |Cul |+ C and |Chl [+ ' | hotkeys.

© 2018 Ultimate

153

ULTRAATE

Developer SOLIn

Parameters in lists can be moved out of title bar by holding left mouse button. Thus, selected
parameter may be child parameter for any other. Arrow=> indicate which parameter will be selected

as parent:

Reguest parameters Request parameters

g @ Rl
Mame Type Is array Developer's comments —— ' Mame Type Is array Developer's comments
w A leng v A long
B long 3 g

Request parameters
-
MName Type Is array Developer's comments
v A long

v B long

In case second-level parameter moves to his parent first-level parameter, it also moves to the first

level:
Reguest parameters Request parameters
3§ © ¢ e
Name Type Is array Developer's comments S > MName Type Is array Developer's comments
A long

long

e Web service returns list of response class instances - flag which shows that web-service return value

list.
The tab Permissions let quickly set up the web-roles list, which have access to this web-service. Roles list

allow easily control whether at least one web-role is available for web-service:

% Web services, 11129 = B
«E Web services: 11120] nofiles » en [£ 9 Classcode 0K Save Cancel
Web service Parameters
Name CreateReserve Setup roles .
Script Click here to edit the script...
Role Allow
Folder Web services - Unit tests 7
Metadata tags estore T

Developer's comments
Create new reserve

© 2018 Ultimate 154

Developer

ULTRAATE

SOLID

By button tap “%} Class code” generated class, which describe web-service, is opened in toolbar of

editing form:

@ CreateReserve — Class code
T 77725
2| // <auto-generated>
3| // This code was generated by a tool.
4| // Runtime Version: 4.8.38319.%
5| /7
6| // Changes to this file may cause incorrect behavior and will be lost
7| // the code is regenerated.
8| // </auto-generated>
B | /= m s m o m o oo e e e
16
11 | namespace Ultima.WebServices
12094
13 using System;
14 using System.Collections.Generic;
15 using System.ComponentModel.Composition;
16 using System.Runtime.Serialization;
17 using ServiceStack;
18 using Ultima.WebServices;
19
28 <summary >
21 CreateReserve. Regquest data transfer object
22 </ summary>
23 [Permission, DataContract{Namespace = "http://ultimabusinessware.con
24 public partial class CreateReserve : IReturn<CreateReserveResponse>
25 {
26 f{f <summary>
27 ArticlelInfo.
28 </ summary>»
29 [Permission, DataContract(Namespace = "http://ultimabusinessware.con
38 public partial class ArticleInfo
31 {
22 [<summary >
33 Gets or sets Id
34 / </summary >
35 [DataMember, ApiMember(Description = "", DataType = "long", IsRe
36 public long Id { get; set; 1

< >

Example of web-service MyOrders which return documents list in specified interval of dates:

class MyOrders : IReturn<List<MyOrdersResponse>>

{
DateTime DateFrom
DateTime DateTo
}
class MyOrdersResponse
{
int ID
string Comments
DateTime Date
Article[] Articles
class Article
{
int ID
string Name
decimal Price
}
}

L IWebService interface implements the following methods:

e Get(TRequest request) —executes specified GET-request;
Put(TRequest request) — executes specified PUT-request;
Post(TRequest request) —executes specified POST-request;
Delete(TRequest request) — executes specified DELETE-request;

© 2018 Ultimate

155

ULTRAATE

Developer SOLIn

e Options(TRequest request) —executes specified OPTIONS-request;
e Any(TRequest request) — used for execution of the request, which method differs from specified
above.

In addition to universally accessible web service, deployed by the administrator at particular address, it
can be started locally. To do that, indicate Localhost in the configuration of application server as its
address:

Web server | Localhost 8337

The web developer can receive a list of available web services at their address:

5} Uttima Web Service Host % |
+ € == @ localhost3337/metadata
- - A 2
Ultima Web Service Host N
The following operations are supported. For a formal definition, please review the Service XSD.
Operations
AcceptPayment XML JSON JSV CSV SOAP1.1 SOAP1.2
Cleanuphgent XML JSON JSV CSV SOAP1.1 SOAPA1.2
CleanupDocument XML JSON JSV CSV SOAP1.1 SOA|
ConfirmClientPasswordChangeRequest XML JSON JSV CSV SOAP1.1 SOAPT
CreateAgent XML JSON JSV CSV SOAP1.1 SOAP1.2
CreateClient XML JSON JSV CSV SOAP1.1 SOAP1.2
CreateDeliveryAddress XML JSON JSV CSV SOAP11 SOAP1.2
CreateResernve XML JSON JSV CSV SOAP1.1 SOAP1.2
DeclinePayment XML JSON JSV CSV SOAP1.1 SOAP1.2
DeleteDeliveryAddress XML JSON JSV CSV SOAP1.1 SOAP1.2 v
5} Uttima Web Service Host % |
+ € == @ localhost8337/s0ap12/metadata
- - A 2
Ultima Web Service Host AN
<back to all web services
CleanupAgent
Parameters:
NAME PARAMETER DATA TYPE REQUIRED DESCRIPTION
Agentld path lang Mo
SecurityKey path string Mo
To override the Content-type in your clients, use the HTTP Accept Header, append the .soap12 suffix or ?format=soap12 w

Swagger (specification, description and documentation of REST service) is supported too:

© 2018 Ultimate 156

ULTRAATE

SOLID

Developer

15} swagger Ul x |

« 3> C =

® localhost:2337/swagger-ui/ |

{3 Swagger http:/localhost 8337/ resources Explore

AcceptPayment : Show/Hide List Operations = Expand Operations = Raw
Cleanu gent: Show/Hide | List Operations | Expand Operations | Raw

CIeanupDocu ment: Show/Hide | List Operations | Expand Operations | Raw
ConfirmcClientPasswordCha ngeReq uest: Show/Hide | List Operations | Expand Operations | Raw
CreateAgent . Show/Hide | List Operations | Expand Operations | Raw
CreateClient : Create new client Show/Hide | List Operations | Expand Operations | Raw

By selecting the service and operation type Get/Post (and, if necessary, having set the values of
parameters), you can check the service functioning by clicking "Try it out!":

=) Swagger Ul x
L) swagg |

« 3> C =

{3 Swagger http:/localhost 8337/ resources Explore

@ localhost:2337/swagger-ui/#! /AcceptPayment/getAcceptPayment_get_0

AcceptPayment: Show/Hide List Operations = Expand Operations = Raw

/AcceptPayment

Response Class
Model | Model Schema

AcceptPaymentResponse {

H

Response Content Type | application/json

Parameters
Parameter Value Description Parameter Type Data Type
Login | | path string
Password | | path string
DocumentID | | path long

/AcceptPayment
/AcceptPayment
/AcceptPayment

CIeanupAgent: Show/Hide List Operations = Expand Operations = Raw

L

' The requests to the web service are executed always on behalf of WebService user with their
l permissions in the protected mode.

© 2018 Ultimate 157

ULTRAATE

Developer SOLIn

' After any changes made to web services, they should be reloaded £ Compile
= with the command Reload web services, for these changes to take FEE | @9 Reload -

Tools
effect e Tl Reload metadata
Bra

% Reload web services

& Restart current cluster

Access to web-services is limited and provided only to authorized users.

Such restriction is realized for security purposes that different applications could have access only to
their web services through the corresponding users. In this case the compromise of one application will
not affect on the other applications, which also use the web services.

Authorization for all web methods of the service is mandatory. For authorization HTTP Basic
authentication is used.

In case of unsuccessful or incorrect authentication of the user of web service the HTTP code #401
(Unauthorized).

In case when the user has no rights on this method HTTP code comes back #403 (Forbidden).

ﬁ In order not to pass the authentication procedure permanently, it is necessary to save the
cookie "ss-id", transmitted by web service, and pass it on requests.

In order to use authentication in SoapUl (=+ http://www.soapui.org/), it is necessary to set
Authorization: Basic, add Username and Password and choose Authenticate pre-emptively.

However, the authentication does not work with Soap 1.1/ Soap 1.2/ Xml clients of ServiceStack.

Granting of permissions for execution of web services is implemented by roles similarly to ordinary
users of the system.

Tools of web service settings are detailed described in documentation of the system administrator
Ultimate AEGIS®. Tools are in the Administrator tab of the main menu in WebService group:

ULTIMA, msapaev, mick@ocahost:8192 | Tools | = @ =
Developer ‘ Administrator ‘ -
i Clusters ® Sessions m = @& Command stats Subtype history: Bl History | Users
L 2 — ; =
S Predicates 9 g3 versions tags — " [@ printstats B User settings .~ Roles

Users Constants View | Printers Queue History Restore d t: Flush dictionary
7 Permissions Current config & viewlogs mining [8] Totallimitresets | oo e coomen i Totals data - cache Sessions

Access Control Version tag: msapaev, duster: msapaev Monitor Fast access Printing History Open by ID Manage WebService

e Users —web service users;
e Roles —web service roles;
e Sessions —web service sessions.

© 2018 Ultimate 158

http://www.soapui.org/about-soapui/what-is-soapui-.html

ULTRAATE

Developer SOLIn

Itis necessary the following for web service settings:
e as web service role to set a flag in the web service list for this web service:

[webservice roles, 82 o B R

E| WebService roles: 82] nofiles - en £ OK Save Cancel

M -~
Mame MobileSignee Fme

LinkClientSodalMetworkAccount
Group Mobile Signee A 7

A

MobileSignee

Role for signing payments request via mobile AcceptPayment

Desaription DedinePayment
GetAttachment
GetpaymentInfoByDocumentID
GetShortPaymentsList

LoginUser

L

PersonalCommentEdit
PrintDocumentWithTerminal
v Replicator
GetBanks "

e in aweb service user card to set aflagin arole list for the role giving access to this web service:

[# WebService users, 61 o = 2
+[5 WebService users: 61 il] nofiles = en £ OK Save Cancel
N Descripti
Login maobileSignee sme LA
3 Clients

Password change password

w || Mobile Signee
Group Mobile Signee - CEQ
Manager
| MobileSignee Role for signing payments request via mobile
Unit tests
w Partners

Suppliers

Several roles may be assigned to an user. The role, in its turn, can provide access to several web
services. As a result, the user gets access to all web services of all selected models.

Pay attention: Accounts with unlimited mode of connection accounting are listed in a license
| file. If an account login is designated as unlimited, a password will be checked according to
license file but not in the user dictionary!

© 2018 Ultimate 159

Developer

Example of clientimplementation in C#:

using System;
using ServiceStack;
using Ultima.WebServices;

namespace ConsoleApplication

ULTRAATE

SOLID

var client = new JsonServiceClient("http://192.168.254.54:8337")

{
class Program
{
static void Main(string[] args)
{
{
UserName = "UserName",
Password = "UserPassword"
¥
var request = new GetNow();
var response = client.Get(request);
Console.WriteLine("IsoTime: {@}", response.IsoTime);
Console.WriteLine("Time: {@}", response.Time);
Console.WriteLine("Timestamp: {@}", response.Timestamp);
Console.WriteLine("Date: {@}", response.Date);
Console.ReadLine();
}
}
}

Example of client implementation in php:

#!/usr/bin/php -q

<?php

require_once 'HTTP/Request2.php’;
require_once 'HTTP/Request2/Cookielar.php’;

$request = new HTTP_Request2("http://192.168.254.54:8337/json/reply/GetNow",

HTTP_Request2: :METHOD_POST);
$request->setAuth('UserName', 'UserPassword');

$response = $request->send();

if ($response->getStatus() == 401)

{
echo "Auth error!\n";
exit();
}
if ($response->getStatus() != 200)
{
echo "Status: " . $response->getStatus()
exit();
}

$body = $response->getBody();
echo $body . "\n";
?>

"\n";

© 2018 Ultimate

160

ULTRAATE

Developer SOLIn

After authentication of web service user, a session, ID is created, which is returned by authentication
method.

The list of all sessions of the users of web services can be found in the form WebServiceSessions (in the
tab Administrator of the main menu in the group WebService):

WebServiceSessions o B OR
Max. rows: 10000 | - | Show sessions data: = <% Filters &) ~
Auth identity User Start time Last sccess time Data
¥ anj'.i\'m\r‘ICZuZDwaUpPQ UnitTests 3/18/2015 1:31:16 FM 3/18/2015 1:37: 16 FM
bys71cGjti2sK FKHROw UnitTests 3/19/2015 12:29:12 PM 3/19/2015 12:29: 13 PM
The life span of the sessions is indicated in the cluster settings. e
Session expiry, days 7L

Implementation of web service methods has UserSession property with type IWebServiceUserSession.
Using this property, you can learn the code of authorized user of the web service — UserSession.UserID,
as well as handle the data stored for this session — Dictionary<string, object>UserSession.Data.

For example, a code of the client, who passed authentication procedure on the website, is stored in the
base solution in UserSession.Data. If the application has its own system of sessions, its ID can be saved
in the web service session.

In order to save the session between the calls of web service methods, cookie "ss-id" should be saved in
the web service client and transferred.

The extended information about the errors is transferred to the web service client in HTTP headers
UltimaErrorCode, UltimaErrorText and UltimaUserReadableError. The first header is error code, the
second one is its text.

Codes 100-199 are reserved for the errors of basic solution. For example, the client's authentication
error has code 100.

In order to bring back the extended information about the error, ExtendedHttpError class should be
used:

throw new ExtendedHttpError(1234, "Error description", true);

| ' I Exception ExtendedHttpError is intended for use only and directly in the web code of services.
| |

Use in other places, as a rule, means doubling of the logic — a situation in which procedures of
data processing for web and not for web differ. It should be avoided carefully. While
respecting the exception does not need to throw out anywhere except web services code.

For processing of expanded information on web service errors the clients of ServiceStack should receive
data of http headings from the exception:

try
{
var request = new GetNow();
var response = client.Send(request);
}
catch (WebServiceException e)
{
var errorCode = e.ResponseHeaders.GetValues("UltimaErrorCode");
var errorText = e.ResponseHeaders.GetValues("UltimaErrorText");
}

© 2018 Ultimate 161

ULTRAATE

Developer SOLIn

Use of services

To use the functionality provided by services, it is necessary to import the interface realized by them.
For this purpose it is necessary to announce the property of the set type and to mark it with attribute
[Import]:

[Import]

private IServiceName ServiceName { get; set; }

Import is carried out by means of the MEF platform (Managed Extensibility Framework) which detailed
description can be found on MSDN website =+ eng/rus.

Unlike usual implementation of the MEF application (on the right) distributed MEF container
MEF application is realized (below) in Ultimate AEGIS®:

catalogs of
components

A OA& T
O\\\ﬁ/}m

components

catalogs of the client SERVER
CLIENT components

MEF container
MEF container P of the server

components

client e 1 } public components

components

which are available
from the client
server components
which are available
through Zyan

private components-
services which are
available only on the
server

Zyan Connection Zyan Host

/
catalogs of components / ///
/

ULTIMALIB 8 /
Server Implementation /
Scripted Services

To import multiple services that implement the same interface ImportMany is used (ImportSource
must be specified, as a hierarchy MEF-containers is used in Ultimate AEGIS®):

[ImportMany(Source = ImportSource.Local)]
private Lazy<IServiceName>[] ServiceName { get; set; }

The inactive initialized list of services will be the result of such imports that implement the
specified interface.

If it is necessary to choose one of them, it is possible to use import metadata:

[ImportMany(Source = ImportSource.Local)]
private Lazy<IServiceName, IServiceMetadata>[] ServiceName { get; set; }

MEF Explorer — debugging

“a_&" The MEF platform (= eng/rus) is the framework for the Ultimate AEGIS® system. It assembles an
application from independent components, such as kernel services, scripts and applied classes. MEF is
used both in server and client parts, making the program to have an identical modular structure in both
cases and use single API, which is well documented and rather popular.

MEF is a late binding system based on the comparison rules. The comparison is carried out between so
called imports and exports provided by the components. To get a component ready to go, all its imports
must be compared with exports of other components. Binding is carried out during the execution of the
program, which ensures the desired flexibility. The components to build the program may be developed

© 2018 Ultimate 162

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/ru-ru/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/ru-ru/library/dd460648.aspx

ULTRAATE

Developer SOLIn

simultaneously by separate programmers' teams: e. g., the form of a client application may use a server
service, which is under construction, provided that the service interface is formally coded.

A downside of such flexibility is binding errors. If in the process of execution the application needs a
service that is not yet implemented, a binding error will occur. The program components may have
sophisticated relations, and even if one such relation is not found, the whole component becomes
useless.

Unfortunately, the diagnosis of such bugs is difficult. All that MEF knows at the moment of occurrence of
a binding error is that one of the binding rules cannot be complied with. A typical text of the bug in such
case is as follows:

The composition produced a single composition error. The root cause is provided below.
Review the CompositionException. Errors property for more detailed information.

1) No exports were found that match the constraint:

ContractName Ultima.Scripting.IUserCommand
RequiredTypeIdentity Ultima.Scripting.IUserCommand
RequiredMetadata

ScriptID (Ultima.Scripting.IScriptMetadata)
Resulting in: Cannot set import '

ContractName Ultima.Scripting.IUserCommand

RequiredTypeIdentity Ultima.Scripting.IUserCommand

RequiredMetadata

ScriptID (Ultima.Scripting.IScriptMetadata)' on part '(name)'

Element:

ContractName Ultima.Scripting.IUserCommand

RequiredTypeIdentity Ultima.Scripting.IUserCommand

RequiredMetadata

ScriptID (Ultima.Scripting.IScriptMetadata) --> Unknown Origin

at System.ComponentModel.Composition.CompositionResult.ThrowOnErrors(AtomicComposition
atomicComposition)

at
System.ComponentModel.Composition.Hosting.ImportEngine.SatisfyImportsOnce(ComposablePart
part)

at

System.ComponentModel.Composition.Hosting.CompositionContainer.SatisfyImportsOnce(Composab
lePart part)

Itis only clear from the text that some component cannot be provided upon the system request. Which
component exactly is the cause of the error and how to correctitis unclear.

Since it is only applied errors of such kind that are of interest to programmers, the range of possible
causes narrows down to two typical situations:

e errorin ascript (not necessarily in that one requested);

e errorinaclientform (orin one of its relations).

To investigate such errors on the basis of the console utility Mefx, a
tool called MEF explorer was developed. It shows the structure of MEF i Languages -
catalogs for client and server parts (in the corresponding tabs). 5 Misc tools -

U+| Haot keys

i Show possible memory leaks

Test windows and search for leaks
MEF explorer
Preserved objectJ}

Issue trackers

Objects issues

© 2018 Ultimate 163

ULTRAATE

Developer SOLIn

s MEF Explorer = & =%

Client application | Server application
Composable parts Description Exports
Drag a column header here to group by that column : Ultima. ClassDescriptors. MetadataDescriptorLocator Export

= Ultima. ClassDescriptors, MetadataDesariptorLocator ...

Composable part Part type Script

E Ultima. ClassDescriptors. MetadataDescriptorLocator [E metadata
@ Accepted Ultima.Log.Logger Other Imports Satisfied by
@ Accepted Ultima.Log.LogManager Other Status Import Export -
@ Accepted Ultima, Metadata. AcceptancelistArticleTablePar tRow [E Metadata & satisfied AllDescriptors Ultima.Metadata. Acceptancel istArticleTablePart. .. =
@ Accepted Ultima, Metadata, AcceptancelistDocument [E Metadata & satisfied DescriptorLocator Ultima.Metadata. Acceptancel istDocument. Static. .
@ Accepted Ultima. Metadata. AcceptanceRequestartideTablePar tRow [E Metadata Ultima.Metadata. AcceptanceRequestartideTable. .
@ Accepted Ultima, Metadata. AcceptanceRequestDocument [E Metadata Ultima.Metadata. AcceptanceRequestDocument. ...
@ Accepted Ultima. Metadata. AccOperation [E Metadata Ultima.Metadata. AccOperation. StaticClassDescri...
@ accepted Ultima. Metadata. AccountableCashDocument [E Metadata Ultima.Metadata. AccountableCashDocument. Sta. ..
& Accepted Ultima. Metadata. AccountingSaleDocument [E metadata Ultima.Metadata. AccountingSaleDocument. Static. .
@ Accepted Ultima, Metadata. AccountStatementDocument [E metadata - Ultima.Metadata. AccountStatementDocument. 5t

If no errors occurred, all component imports are compared with exports of other components, and all
the composable parts are supplied with the status & Accepted.

Of course, other statuses are of greater interest. Any binding error means that the component was

rejected due to one of the following reasons:

&3 Primary Rejection — particular component's imports lack corresponding exports;

!/ Rejected — component's exports exist, but cannot be created, as their imports, in their turn, lack
corresponding exports.

Let's see, what actions the application programmer will perform, once the error occurred.

Suppose that the binding error (No exports were found that match the constraint...) occurs during the
MobileStorePickupService request. However, the real problem is never in the request. If to open the
scriptin an editing program, we will see that it is compiled without errors. To identify the reason, run
MEF Explorer and search for the component that caused the error in the Composable parts list by its
statuses, Rejected or Primary Rejection, and name.

When selecting this component in the Imports list, to the right of the component, there will be shown
all imports that are either bound or unbound with exports. Viewing unbound imports, we can find out
the real cause of the error:

4 MEF Explorer

o B R
Client application | Server application
Composable parts Description Exports
[Primary Rejection] Export
Status < Ultima. Seripting. Mobile. MobileStorePickupService
(cached) Ultima. Scripting. Mabile. IMobileStorePickupService
Composable part Part type Seript
> Status: & Accepted Imports Exception
v Status: Primary Rejection Status Tmport System.ComponentMode!. Compasition. ImpartCardinalityMismatchExcep
g v el ~ = - - tion: No exports were found that match the constraint:
Ultima. Scripting. Mobile. MobileStocktakingService (cached) %3 Mobile service 18838 @ Satisfied Ultima, Client, IUserMessages ContractMame Ultima, Scripting. I5tore ZonePickupService
Ultima. Scripting. Mobile. MobileStorePickupService (cached) % Mobile service 15205 @ satisfied Ultima. Dicionaries. IDictionaryManager RequiredTypeldentity Ultima. Seripting. IStoreZonePickupService
. " " " - at
v Status: (! Rejected @ Satisfied Ultima. Dictionaries. ILinkTableManager System, ComponentModel, Compasition, Hosting, ExpartProvider, GetExp
Ultima Scripting.Mabile MobileStoreReleasePickupService ... % Mobile service 19954 & satisfied Ultima. Documents. IDocumentManager orts{Impor tDefiniton definition, AtomicComposition atomicComposition)
- at
Ultima, Scripting, Mobile. MobileStoreTransferPicupService... % Mobile service 17703 @ Satisfied Ultima. [ConstantiManager Microsoft.ComponentModel. Composition. Diagnostics. CompositionInfo. A
@ satisfied Ultima.Ling.ITableSource nalyzelmportDefinition (ExpartProvider host, IEnumerable™ 1
@ Satisfied Uttima.Log. ILogManager availableParts, ImportDefinition id) in c:Wwork\UtimaKernel\Libraries

= WhimaLibYComposition\Diagnostics\CompositionInfo.cs:line 278
@ satisfied Ultima. Scripting. [EmployeeService

& satisfied Ultima. Scripting. IStorePickupService Unstitable exports
£63 Not satisfied | Ultima. Scripting. IStoreZonePidwpService | | EPort Issues
Ultima. Server.Data.ISqlService

In the example above, we can see that the problem is in IStoreZonePickupService. This application
service is absent in the server-side catalog. There may be the following reasons for that:

e the service has an interface, but it is notimplemented so far;

e the interface is implemented, but there are compilation errors;

e the MEF Cache of the service script is empty for some reason (probably, as a result of merging of
metadata versions).

© 2018 Ultimate 164

Developer

To correct the error, you need to:

e find the IStoreZonePickupService interface in the Interfaces dictionary:

ULTRAATE

SOLID

e check

S Interfaces o B OER
o e F & [= O O [& |ldentt istorezone g, | |Tag o, E | -
Mame Identity Mame
~ Interfaces 22362 IStoreZoneAcceptanceService
Finances 3 IStoreZonePickupService
Validation
» GStore
Production
if the interface is implemented (if not, add implementation):
S Interfaces, 17156 o B 8
«E Interfaces: 17156 1l nofiles + en oK Save Cancel
Interface Services
MName IStoreZonePickupService O O P # |Identt e a, K ' -
Script Click here to edit the script... -
Identity Mame
Friss Store M b 17159 iStoreZonePickupService
Metadata tags & Edit
@ Delete
Developer's comments L7 Edit script |:

¢ if implemented, repair the implementation script:

J# StoreZonePickupService, 17161

= B
«[E Scripts: 17161 [E+ | € Checksource | 4 = Gotoline Current Element | 4% StoreZonePickupService | = OK Save Cancel
Script text | Resources | Generated Text {read-only) | Generated Resx {read-only) | MEF Cache {read-only)
28 public partial class StoreZonePickupService] i
29 {
38 [Import
31 private IStorePickupService StorePickupService { get; set; }
Errors B X
Text ¥ |Line Column Is Warning
3 CS 1003 Sintax error, expected "]" 30 16

| Errors

| | Properties | | Find all | | Versions history | | Changes history

Data access methods

Data access is possible using one of the following methods:
e services IDictionaryManager and IDocumentManager:

= are designed to manage data (saving, creation, deletion) of system objects;
e LINQ queries allows carrying out:

= strictly typed access to the objects;

= JOIN operations and complex selection conditions;
e SQL service —allows executing:

= ad hoc SQL queries (read only);

= autonomous transactions;

= query to Standby server;

= sequencer;

handling of temporary tables (TEMP_TAG_IDLIST);

© 2018 Ultimate

165

ULTRAATE

Developer SOLIn

IDocumentManager and IDictionaryManager interfaces_2

The system provides DictionaryManager to manipulate the dictionary records.
The system provides DocumentManager to manipulate the documents.

The description of all other managers can be found in the section Special managers.

The manager (from namespace Ultima.Dictionaries) serves for work with dictionaies .

ZF The interface of IDictionaryManager implements the following methods:
e GetRecord (Type dictionaryType, long id, bool withinnerObjects = false) returns an instance of
dictionary record with specified ID:
= dictionaryType —dictionary type;
= jd —dictionary record ID;
= withinnerObjects —if the parameter value is set to true, the inner object of dictionary record will be
loaded. The inner objects of dictionary record include e.g. link tables and attached dictionaries. In
case of indication of the need in loading of inner objects, the data of link tables associated with the
dictionary record and of attached dictionaries will be loaded in full. Otherwise, only IDs will be
loaded;
e GetRecords(Type dictionaryType, LambdaExpression selectExpression, IDList records) returns a table of
dictionary records with specified IDs:
= dictionaryType —dictionary type;
= selectExpression — an expression describing which of dictionary columns will be loaded. If null is
indicated as parameter value — the values of all columns will be loaded for indicated dictionary
records;

= |DList — a list of IDs of dictionary records. If null is indicated as parameter value — all dictionary
records will be loaded;

e GetRecords(Type dictionaryType, LambdaExpression selectExpression, LambdaExpression
filterExpression) returns a table of dictionary records meeting the filter condition:
= dictionaryType —dictionary type;
= selectExpression —an expression describing which of dictionary columns will be loaded;
= filterExpression —an expression describing which of dictionary records will be loaded (see details in

the section Filters);

e GetLookup(Type dictionaryType, IDList records = null) returns a table of dictionary records with
specified IDs containing only lookup-columns (properties of the dictionary with set flag LookUp and if
not, itis listed in the DisplayFormat properties):
= dictionaryType —dictionary type;
= |DList — a list of IDs of dictionary records. If null is indicated as parameter value — all dictionary

records will be loaded;

e GetLookup(Type dictionaryType, LambdaExpression filterExpression) returns a table of dictionary
records meeting the filter condition, and containing only lookup-columns:
= dictionaryType —dictionary type;
= filterExpression —an expression describing which of dictionary records will be loaded (see details in

the sectionFilters);
e NewRecord(Type dictionaryType, [Dictionary<string, object> parameters = null, IDictionaryRecord
template = null) creates a new dictionary record and transfers it to BeforeCreate handler:
= dictionaryType —dictionary type;
= Parameters— the parameter list for the new entry (optional);
e as parameters, you can use any of the properties in the directory entry;
e any additional parameters can be processed by the script dictionary.
e if setto ID, this value will be used for new record ID;

= Template—initial value (optional);

© 2018 Ultimate 166

ULTRAATE

Developer SOLIn

e SaveRecord(Type dictionaryType, IDictionaryRecord record, params ILinkTable[] linkTables) saves the
dictionary record:
= dictionaryType —dictionary type;
= record —a dictionary record being saved;
= JinkTables — data of link tables for saving;
e SaveRecords(Type dictionaryType, IDictionaryTable records) saves the dictionary record:
= dictionaryType —dictionary type;
= records —a table of dictionary records being saved;
e SaveRecords(params IEntity[] records) saves the dictionary records:
® records —dictionary records being saved;
e SaveRecords(RecordSet recordSet) saves the dictionary records:
= recordSet — a set (container) save the phonebook entry;
e SaveAndGetRecord(Type dictionaryType, IDictionaryRecord record) saves the dictionary record and
then retrieves it from the database, returns an instance of loaded record:
= dictionaryType —dictionary type;
= record —a dictionary record being saved;
e DeleteRecord(Type dictionaryType, long id) deletes the specified dictionary record:
= dictionaryType —dictionary type;
= record — D of the dictionary record being deleted;
e CloneRecord(Type dictionaryType, long id) clones the specified dictionary record:
= dictionaryType —dictionary type;
= record — D of the dictionary record being cloned.

[Import]
private IDictionaryManager DictionaryManager { get; set; }

var user = DictionaryManager.NewRecord<User>();
DictionaryManager.SaveRecord(user);

[} RecordSet class —container of records for saving:
e AddTask(long printFormld, long copies = 1, IDictionary<string, object> parameters = null) adds a print
task for the print form, not associated with any object:
= DictionaryRecords —collection of dictionary records;
= LinkRecords — collection of link table record;
= documents —documents collection;
= DijctionariesTables — collection of dictionaries table;
= linkTables —link tables collection.

ZF interfacelEntityExtensions (from namespace Ultima.EditableObjects) realize the extend interface
methods /Entity — of single methodsmetadata objects classes (dictionaries, documents, etc) - and let to
receive original values of dictionary record properties:
e GetOriginalValue<TEntity, TResult>(this TEntity entity, Expression<Func<TEntity, TResult>> getExpr) —
backs original value of stated property:
= TEntity —object type;
= TResult —result type;
= entity —object;
= getExpr—expression of receiving the property of type x =>x.Name;
e |sPropertyChanged<TEntity, TResult>(this TEntity entity, Expression<Func<TEntity, TResult>> getExpr) —
backstrue, if the value of stated property was changed:
= TEntity —object type;
= TResult —result type;
= entity —object;
= getExpr—expression of receiving the property of type x =>x.Name;

© 2018 Ultimate 167

ULTRAATE

Developer SOLIn

e RejectPropertyChanges<TEntity, TResult>(this TEntity entity, Expression<Func<TEntity, TResult>>
getExpr) —backs original value to the stated property:
= TEntity —object type;
= TResult —result type;
= entity —object;
= getExpr—expression of receiving the property of type x =>x.Name;
e SetPropertyValues(this |Entity entity, IDictionary<string, object> propertyValues) — let entry values of
scalar property:
= entity —object;
= propertyValues —values set.

long userld = 1;
var user = DictionaryManager.GetRecord<User>(userld);
user.Name = user.Name + "Junior";

var currentValue = user.Name; // current (changed) value of the property

var originalValue = user.GetOriginalValue(x => x.Name); // original value
user.IsPropertyChanged(x => x.Name); // return true

user.RejectPropertyChanges(x => x.Name); // return original value to the property

The manager (from Ultima.Documents namespace) is designed to handle documents.

EF & The interface of IDocumentManager implements the following methods:
e GetDocumentType(long id, bool demandReadPermission = false) returns a type of specified document
and, optionally, if current user has a permission to read it:
= jd —document ID;
» demandReadPermission — if true it checks where current user has a permission to read the
document;
GetDocumentTypelD(long id) returns ID of specified document:
* jd —document ID;
GetDocumentSubtypelD(long id) returns subtype ID of specified document:
= jd —document ID;
GetDocument(long id, bool includeDeleted = false) returns an instance of the document with specified
ID:
® jd —document ID;
® includeDeleted —if trueis indicated as parameter value, the values will be returned also for deleted
rows of the table parts of the document (but only for those table parts, for which Soft deletion is
enabled);
NewDocument(Type documentType, long? subtypeld = null, IDictionary<string, object> parameters =
null, IDocument template = null) — creates a new document, returns an instance of created document of
certain subtype (if the subtype is not defined, an exception will be returned):
= documentType —document type;
= subtypeld —document subtype (optional);
= Parameters- a list of parameters to create (optional);
e as parametersitis possible to use any properties of a header of the document;
e any additional parameters can be processed by a document script;
e if IDis setin parameters, then this value will be used to code a new document;
= Template —initial value (optional);
e SaveDocument(IDocument document) saves the document:
» document —a document being saved;
e SaveDocuments(params IDocument([] documents) saves the documents:
= document—a document being saved;

© 2018 Ultimate 168

ULTRAATE

Developer SOLIn

The methods checks if each of the documents is delivered exactly once. This prevents from the
situation, when the same documentin alistis in two different states, such as:
var docl = DocumentManager.GetDocument<SaleDocument>(123);
var doc2 = DocumentManager.GetDocument<SaleDocument>(123); // the same document code
docl.AgentID = 1;
doc2.AgentID = 2; // different fields values
SaveDocuments(docl, doc2); // document state is undefined
SaveAndGetDocument(IDocument document) — saves the document, receives it from the database and
then returns the copy of the loaded document:
» document —a document being saved;
DeleteDocument(long id) — deletes the specified document:
= jd —1D of the document being deleted;
ReviveDocument(long id) —tries to revive the specified document:
= jd —ID of the document being revived;
ReprocessDocuments (IDList documents) - to recreate the wiring of these documents, without changing
anything and without going through the event handlers:
= documents —a list of documents IDs;
AddLlink(long parentDocumentld, long childDocumentld, long linkTypeld) — created link between two
documents:
= parentDocumentld —parent document ID;
= childDocumentld — child document ID;
= JinkTypeld —link type ID;
Removelink(long parentDocumentld, long childDocumentld, long? linkTypeld = null) - removes the link
between the two documents:
= parentDocumentld — parent document ID;
= childDocumentld — child document ID;
= |inkTypeld— a reference code which needs to be removed (if it isn’t specified — the reference of any
type will be removed);
Removelinks(long documentlid, long? linkTypeld = null) - removes the link between the two documents:
= documentld —document ID;
= |inkTypeld— a reference code which needs to be removed (if it isn’t specified — the reference of any
type will be removed);
GetDocumentParents(long documentld)— returns a list of IDs of parent-documents of the specified
document:
= documentid —document ID;
GetDocumentChildren(long documentld)— returns a list of IDs of child-documents of the specified
document:
= documentid —document ID;
GetDocumentFamily(long documentid)— returns a list of IDs of family-documents of the specified
document:
= documentld —document ID;
GetAllowedSubtypes(long typeld, AccessOperation accOperation) — returns a list of subtypes for
specified document type, the access to execution of specified operation over which the current user has:
= typeld —document type ID;
= gccOperation —operation.

© 2018 Ultimate 169

ULTRAATE

Developer SOLIn

[Import]
private IDocumentManager DocumentManager { get; set; }

var newDoc = DocumentManager.NewDocument<SaleDocument>();

var oldDoc

DocumentManager.GetDocument<PurchaseDocument>(123);

// Creation of document copy with the table parts.

// The flags Save and Deleted are not copied in such case.
var copyDoc = DocumentManager.NewDocument(oldDoc);
DocumentManager.SaveDocument (copyDoc);

ZF interface |EntityExtensions (from namespace Ultima.EditableObjects) realize the extend interface
methods /Entity — of single methods metadata objects classes (dictionaries, documents, etc) - and let to
receive original values of dictionary record properties:

LINQ queries

An access to each object of the system can be gotten through the interface ITableSource (from
namespace Ultima.Ling):

[Import]

private ITableSourse DataContext { get; set; }

The result of the LINQ inquiries will be collections of the type /IEnumerable<T> (where T — collection
element type):
var query =

from u in DataContext.GetTable<User>()

where u.Name.StartsWith("a")
select new User

{
ID = u.ID,
Name = u.Name,
Login = u.Login
¥

Using LINQ inquiries itis also possible to get a collection of objects of anonymous classes:
var query =

from u in DataContext.GetTable<User>()

where u.Name.StartsWith("a")

select new

{

u.ID,

UserName = u.Name,

u.lLogin,

FullName = u.Name + " " + u.LastName
¥

And also to carry out the operations JOIN and to apply difficult conditions of selection:

var branches =
from ver in DataContext.GetTable<VersionTreelLink>()
join tag in DataContext.GetTable<VersionTag>()
on ver.DescendantID equals tag.VersionID
where tag.IsBranch && ver.AncestorID == rootVersionId
select tag;

To carry out an asynchronous loading of data:
var result = await DataContext.GetTable<User>().ToListAsync();

© 2018 Ultimate 170

ULTRAATE

SOLID

The following methods of asynchronous loading of data are also available: SingleAsync(),
SingleOrDefaultAsync(), FirstAsync(), FirstOrDefaultAsync(), ToArrayAsync(), ToDictionaryAsync(),
TolDListAsync(), SingleAsync(), SingleOrDefaultAsync(), FirstAsync(), FirstOrDefaultAsync(), AnyAsync(),
AllAsync().

Besides, it is possible to use the filter, constructed by means of PredicateBuilder, in LINQ inquiries.

Developer

© 2018 Ultimate 171

ULTRAATE

Developer SOLIn

SqlService

SqlService (from Ultima.Server.Data namespace) allows executing ad hoc SQL queries:
// A query without parameters.
var sql = @"SELECT DBMS_RANDOM.RANDOM

FROM DUAL CONNECT BY ROWNUM <= 10";

var randomTable = SqlService.Select(sql);

// Query with parameters.
var sql = @"
SELECT * FROM USER_OBJECTS
WHERE OBJECT_TYPE = :vType AND STATUS = :vStatus";

var parameters = new Dictionary<string, object>

{
{ "vType", "INDEX" },
{ "vStatus", "VALID" }
I¥

var indexes = SqlService.Select(sql, parameters);

Use of SqglService is possible in a separate transaction within one server call. In the example below, the
entire block inside using will be registered in the base as single operation, irrespective of the server
call results:

using (var scope = SqlService.BeginTransaction())

{
var args = new Dictionary<string, object>
{
{ "vID", id }
}s
var sql = @"DELETE FROM MY_TEST_TABLE WHERE ID = :vID";
SqlService.Execute(sql, args);
scope.Complete();
}

If a circuit with standby server of DBMS is used, a part of load on it can be redistributed. The standby
servers are open only for reading:

using (var db = SqlService.Standby())
{

}

In some cases, the use of SqglService is the only possible method. For instance, new value of the
sequence cannot be obtained using LINQ queries:

var barcodes = SqlService.GetNewID("STICKER_BARCODE_SEQ");

// execute read-only query

Besides, SqlService allows handling temporary tables:

var tagld = SqlService.FillTempIDList(articleList);
string sql = @"

SELECT TR.ARTICLE_ID, TR.CCD_ID

FROM TR_STOCK_CCDS TR

JOIN KERNEL.TEMP_TAG_IDLIST T

ON T.ID = TR.ARTICLE_ID and T.TAG = :vTagID
var resultTable = SqlService.Select(sql);

© 2018 Ultimate 172

ULTRAATE

Developer SOLIn

LET SqlService implements the following methods:

e Select(string sql) executes SQL query without parameters, returns an object of SlimTable class:
= sql-SQL query;

e Select(string sql, IDictionary<string, object> parameters) executes SQL query with the set parameters,
returns an object of SlimTable class:
= sql-SQL query;
= parameters —a list of parameters for query execution;

e afamily of Execute methods, executing SQL query:

e Execute(string sql) executes SQL query without parameters, returns a number of records satisfying
the query:
» sq/-SQL query;

e Execute(string sql, IDictionary<string, object> parameters) executes SQL query with the set
parameters, returns a number of records satisfying the query:
= sq/l-SQL query;
= parameters —a list of parameters for query execution;

e ExecuteScalar returns an object, which is in the first column of the first row in the resulting query
set;

e ExecuteScalar<T>—strictly typed version of previous method;

e Executelist<T>—strictly typed method, which returns the first column of the resulting query set;

e GetReader(string sql) executes SQL query without parameters, returns an object of /DataReader class:
= sq/-SQL query;

e GetReader(string sql, IDictionary<string, object> parameters) executes SQL query without parameters,
returns an object of IDataReader class:
= sg/-SQL query;
= parameters —a list of parameters for query execution;

e GetNewlD(string sequenceName) returns a new ID for specified sequence (sequence):
= sequenceName —sequence name;

e GetNewlDs(string sequenceName, int count) returns a set number of IDs for specified sequence
(sequence):
= sequenceName —sequence name;
= count—ID count;

e GetDatabaseTime() —returns the database server's current timestamp;

e FillTempIDList(IDList values) fills in TEMP_TAG_IDLIST table with ID values. For instance, a price list
should be generated for a large list of products meeting a number of conditions of complicated query:
to obtain data from several tables — product name, its price, remaining stock, etc. In order not to
execute the query for selection of products during execution of JOIN operation each time, it can be
saved in temporary table. As a result of execution, the method returns a tag, which is created
automatically and which a particular list of values in the temporary table is associated with:
= yalues —a list of IDs for the record;

e FillTemplDList(long tag, IDList values) fills in a temporary TEMP_TAG_IDLIST table with ID values. It
returns a tag, which is indicated also as parameter (the tag must be unique within the executed
transaction) and which a particular list of values is associated with:

" tag —tag;
= values —a list of IDs for the record;

e Exclusivelock(string guid, string description = null) gains exclusive lock:
= guid —aunique ID of the lock;
= description —description of the lock (optional);

e BeginTransaction() begins a new autonomous transaction, returns an instance of TransactionScope;

e Standby() connects to one of standby servers described in the cluster configuration. The standby
servers are open only for reading: the data cannot be changed at the produced connection, even the
temporary table cannot be filled in. It returns an object of IDisposable class.

© 2018 Ultimate 173

ULTRAATE

Developer SOLIn

Opening of new transaction

The main flow of server call is always executed in one transaction from start to end.

client

S

transaction

<::E§2£iix i =
)
(oo (o)
client ‘j;z:z - =

transaction .o

service | ——p» service

Exclusion at any stage of request processing will result into rollback of the entire transaction. However,
execution of DDL requests (e.g. CREATE, ALTER, DROP) will commit the transaction, which may result
into unstable behaviour of the system. Therefore, such requests (DDL or the requests, requiring
intermediate registration due to other reason) should be executed in a separate transaction.

The situation may also arise, when within the scope of one server call any operation should be
committed. For instance, during the request execution, changing a large number of rows (recalculation
of prices), for reduction of duration of possible locks, it can be split into several parts, while changing
100 rows at once, and executing each part in a separate transaction, having commited it.

In order to open a new transaction within the scope of server call, class TransactionScopeBuilder should
be used (from namespace Ultima.Server.Data):

// Clearing of table contents.
using (var scope = TransactionScopeBuilder.CreateTransactionScope())

{
var sql = @"DELETE TABLE TEMP_CALCULATIONS";
SqlService.Execute(sql);
scope.Complete();

}

In the provided example, the entire block inside using will be registered in the base as single
operation, irrespective of the server call results.

The use of Complete method indicates that all operations within the scope are completed successfully.
The use of Dispose method ends the transaction scope, and if Complete method was not used before
that, all operations in the scope will roll back.

The level of isolation for the transaction created using TransactionScopeBuilder will be read commited. If
the transaction should be created with the level of isolation serializable, class TransactionScope can be
used (detailed description of the class can be found on MSDN website = eng/rus):

using (var ts = new TransactionScope(TransactionScopeOption.RequiresNew))

However, the first option with TransactionScopeBuilder is recommended one.

© 2018 Ultimate 174

http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.aspx
http://msdn.microsoft.com/ru-ru/library/system.transactions.transactionscope.aspx

ULTRAATE

Developer SOLIn

Parallel execute request

There are situations in case of which several requests can be executed in parallel. It will allow reducing
overall operation runtime to runtime of the most long executed request and as a result duration of
possible locks.

The server allows starting flows in one server call. At the same time it is necessary to control completion
of flows independently. In each created flow separate connection with DBMS will be used. It is
necessary to consider that changes made earlier in the server call won't be visible from this new
connection.

The ServerCall class (from Ultima.Server.SessionMgmtnamespace) has RunParallel method which
accepts an array of objects like Action or Function and each of them will be started in a separate flow.
The method itself will check completion of all flows.

The flow can be created by any other convenient method, at the same time it is necessary to create the
ServerCall class object independently:
Task.Factory.StartNew(() =>

{
using (new ServerCall())
{
//Operation execution.
}
1)

ServerCall.RunParallel starts tasks in parallel flows only if ServerCall. AllowRunParallel = true.

ServerCall class has four RunParallel methods:
e RunParallel(IEnumerable<Action>actions) executes an array of objects like Action in parallel flows:
= gctions —an array of objects like Action for execution;
e RunParallel<T>(IEnumerable<T> items, Action<T> action) executes operation (an object like Action)
over an array of elements in parallel flows;
= T—elementtype;
= jtems —an array of elements;
= gction —an object like Action for execution at each of elements;;
e |[Enumerable<R> RunParallel<R>(IEnumerable<Func<R>> functions) executes an array of objects like
Function in parallel flows:
= R—result type;
= functions —an array of objects like Function for execution;
e |[Enumerable<R> RunParallel<T, R>(IEnumerable<T> items, Func<T, R> func) — executes operation (an
object like Function) over an array of elements in parallel flows;
= T—element type;
= R—result type;
= jtems —an array of elements;
® func—an object like Function for execution at each of elements.

© 2018 Ultimate 175

ULTRAATE

Developer SOLIn

D All services (special managers and also kernel services and application services) are not
| threadsafe. If multithreaded programming is used on the server, each flow shall access to own
copies of services:
[Import]
private IDictionaryManager DictionaryManager { get; set; }

private void BadCode(IDList users)

{
//To write such code is invalid because several
//flows address to one copy of DictionaryManager
ServerCall.RunParallel(users, id =>
{
var user = DictionaryManager.GetRecord<User>(id);
user.Name += “ (Dismissed)";
DictionaryManager.SaveRecord(user);
})s
}
Instead it is necessary to import the manager as follows:
[Import]

private ServerCallImport<IDictionaryManager> DictionaryManagerImport { get; set; }

private IDictionaryManager DictionaryManager

{
}

get { return DictionaryManagerImport.Value; }

LT] Multithreaded programming on the server belongs to opportunities which should be used only

= in case of emergency. Error connected to multithreaded execution is too easily to be made,
and it is extremely difficult to find it. Potential advantage from use of the multithreaded (well,
optimization of productivity of command execution) is often incommensurable to the error
value (incorrect operation of the command after optimization).

Filters

The class PredicateBuilder is used (from namespace Ultima.Ling) to build expressions for the filters.
Strictly typed expressions-predicates, which use extension-methods And or Or for combination of
subexpressions, can be built using this class.

L} The class PredicateBuilder implements the following methods:

e PredicateBuilder.Get<T>(expr) returns a predicate expr forclass T;

e PredicateBuilder.Get<T>() returns empty predicate (null) for class T;

e PredicateBuilder.True<T>() returns the predicate, which returns always true for class T;

e PredicateBuilder.False<T>() returns the predicate, which returns always false for class T;

e exprl.Or(expr2) —combines predicates exprl and expr2 by means of Or, a result of such combination:
exprl Orexpr2;

e exprl.And(expr2) — combines predicates exprl and expr2 by means of And, a result of such
combination: exprl And expr2.

|!I Let us consider building the filter using PredicateBuilder by example:

© 2018 Ultimate 176

ULTRAATE

Developer SOLIn

Let it be a form containing two entry fields for adding: First Name and last Name. Tasks: to
build an expression-filter for class Employee, using the data from these input fields in
combination Or (i.e. the filter will ignore all records, which first and last names contain
entered data). If any of input field is empty, a corresponding part of the filter will not be used.
Therefore, if both fields are empty, the filter of records must appear empty too:

var filter = PredicateBuilder.Get<Employee>();

if (!string.IsNullOrWhiteSpace(firstName))

{
filter = filter.Or(e => e.FirstName.Contains(firstName));
}
if (!string.IsNullOrWhiteSpace(lastName))
{
filter = filter.Or(e => e.LastName.Contains(lastName));
}

If the data are entered into both fields, the result of PredicateBuilder functioning will appear
the following expression:
e => e.FirstName.Contains(firstName) || e.LastName.Contains(lastName);

If only firstName is entered, just the first part of the filter will remain:

e => e.FirstName.Contains(firstName);

If both fields are empty, the formed filter will remain empty too (null).

Special managers

There are following special managers in the system:

IAuthManager — manager of work with service of authorization and authentication (from namespace
Ultima.Auth);

ICalendarManager — manager of work with a calendar and the scheduler (from namespace
Ultima.Client);

IClusterService — provides cluster-related services such as broadcasting events to multiple servers
(from namespace Ultima.Server);

IConstantManager — manager of work with constants(from namespace Ultima);
IDictionaryCommandManager — manager of work with dictionary list commands (from namespace
Ultima.Scripting);

IDictionaryListCommandManager — manager of work with dictionary list commands (from namespace
Ultima.Scripting);

IDictionaryManager — manager of work with dictionaries (from namespace Ultima.Dictionaries);
IDocumentCommandManager — manager of work with document commands (from namespace
Ultima.Scripting);

IDocumentListCommandManager — manager of work with document list command (from namespace
Ultima.Scripting);

IDocumentManager — manager of work with documents (from namespace Ultima.Documents);
IEmailService — manager of work with service of sending e-mail messages (from namespace Ultima);
IExportManager — manager of work with service of export of printing forms (from namespace Ultima);
IHistoryService — manager of management of logging in a DB (from namespace Ultima);
ILinkTableManager — manager of work with link tables (from namespace Ultima.Dictionaries);

ILogger and ILogManager — manager of logging (from namespace Ultima.Log);

© 2018 Ultimate 177

ULTRAATE

Developer SOLIn

INotificationService — manager of work with service of sending notifications to the user (from
namespace Ultima.Client);

IPrintManager —manager of printing (from namespace Ultima.Printing);

ISmsService — manager of work with service of sending short messages SMS (from namespace Ultima);
ITotalsManager — manager of work with totals(from namespace Ultima.Totals);
IUserCommandManager — manager of work with user commands (from namespace Ultima.Scripting);
IUserManager — manager of work with users(from namespace Ultima);

IUserManager — manager of work with user messages (from namespace Ultima.Client).

To use the functionality provided by managers, it is necessary to import their interfaces like this:

[Import]
private IDictionaryManager DictionaryManager { get; set; }

IAuthManager

The manager (from Ultima.Auth namespace) is designed for work with the authorization and
authentication service. All actions in Ultimate AEGIS® system are performed under a particular user, who
has a finite set of rights. The rights determine if the user can do a certain action or get access to a certain
object. The ideology of this system is that any action or possibility of access to an object must be
allowed initially, that is, what is not allowed is prohibited.

The system of user rights and its structure are described in details in administrator's manual, the section
"Access control tools" (chapter "Administrator module functionality").

L The IAuthManager interface has the following properties and implements the following methods:

IsAllowed(long permissionld) — returns true, if the current user is granted access limited by the
permission specified:
= permissionld —permission ID;
IsAllowed(KernelPermissions permission) —returns true, if the current user is granted access limited by
the kernel permission specified (KernelPermissions):
= permission —kernel permission (KernelPermissions);
UserHasPermission(long userld, long permissionld) — returns true, if the current user is granted the
permission specified:
= yserld —user ID;
= permissionld —permission ID;
UserHasPermission(long userld, KernelPermissions permission) — returns true, if the user specified is
granted the kernel permission specified:
= yserld —user ID;
= permission —KernelPermissions; can accept values:
= None =0-no permissions;
» [oginAs =1-allowed to signin under;
UserHasDictionaryPermission(long userld, Type dictionaryType, AccessOperation accOperation) —
returns true, if the user specified is granted the specified permission to perform operations on the
dictionary:
= yserld —user ID;
= dictionaryType —dictionary type;
= gccOperation —AccessOperation; can accept values:
= Read =1;
» Create =2;
= Update =4,
= Delete = 8;

© 2018 Ultimate 178

ULTRAATE

Developer SOLIn

e UserHasSubTypePermission(long userld, long subTypeld, AccessOperation accOperation) —returns true,
if the user specified is granted specified permission to perform operations on the document's
subtype:
= yserld —user ID;
= subTypeld —document's subtype ID;
= gccOperation —AccessOperation;

e /sAllowed(Type dictionaryType, AccessOperation accOperation) — returns true, if the current user is
granted the permission to perform the specified operations on the dictionary:
= dictionaryType —dictionary type;
= gccOperation —AccessOperation;

e /sAllowed(long subtypeld, AccessOperation accOperation) — returns true, if the current user is granted
the permission to perform the specified operations on the document's subtype:
= subTypeld —document's subtype ID;
= gccOperation —AccessOperation;

o |sScriptAllowed(long scriptld) — defines if the script specified can be executed:
= scriptld —script ID;

e CurrentUserlD of long type —returns ID of the current user;

e CurrentUser of Ultimaldentity type —returns the current user;

e DemandPermission(long permissionld, string operation = null) —defines if the user has the specified
permission; if doesn't, gives a regular exception of "Permission denied" type. You don't have
permission {permissionld}{permission name} which is necessary to {operation}":
= permissionld —permission ID;
= operation —operation that requires the permission. The value of the parameteris used in the text of

the exception given if the user has no permission.

The key difference between HasPermission and IsAllowed is that HasPermission checks if the user
physically has the permission, while IsAllowed checks if the user may perform an action or get access
limited by the permission specified. E. g., when in unsafe mode (used in commands), if a user does not
possess the specified permission, the HasPermission method will return false; at the same time, for the
same permission, the IsAllowed method will return true.

L The IAuthManagerServer interface (from Ultima.Auth namespace) is available only on the application
server and, in addition to the methods of IAuthManager, offers to install unsafe mode using the
SetUnrestrictedMode() method:

using (AuthManager.SetUnrestrictedMode())
{

}

As a consequence, all permission checks that are out of the application server will be performed in safe
mode.

DoSomethingRestricted();

In the converse case, when it is needed to temporarily disable the unsafe mode in commands and other
scripts, which are run with administrator privileges, one can use the SetRestrictedMode() method.

The IAuthManagerServer is available only on the application server and, in addition to the methods of
IAuthManager, offers to install unsafe mode using the SetUnrestrictedMode() method:

Examples of use:

// get current user ID
long userId = AuthManager.CurrentUserID;

// check if user has administrator privilege
if(AuthManager.UserHasPermission(userId, Permission.Administrator))

{

// perform operation requiring administrator privilege

© 2018 Ultimate 179

ULTRAATE

Developer SOLIn

}

ICalendarManager

The manager (from namespace Ultima.Client) is designed to work with the calendar and planner.

ZF The interface of ICalendarManager implements the following methods:

e GetStatuses — returns the dictionary of all statuses of the calendar in a format: identifier and tuple
name/color corresponding to it;

e AddStatus(string name, int color) adds new status with name and color;

e RemoveStatus(long id) removes the status with id;

e GetDayStatuses(DateTime date) returns a list of statuses (IDs) for date;

o GetDayStatuses(List<DateTime> dates) returns a list of statuses (IDs) for the list of dates;

e SetDayStatus(DateTime date, long statusld) sets statusld status for the date;

e RemoveDayStatus(DateTime date, long statusld) removes statusld status for the date.

IClusterService

The service (from Ultima.Server namespace) provides cluster-related methods, such as broadcasting
events across multiple servers.

ZF IClusterService interface includes the following methods:
e LoadClusterConfiguration() — loads the cluster configuration. This method is used by the
infrastructure and is called on server startup.
e RefreshClusterLink(bool cascade) — establishes the network connection with neighbor servers . This
method is used by the infrastructure and is called on server startup:
= cascade —indicates that neighbor servers should also call RefreshClusterLink for their neighbors;
e Subscribe(string eventName, Delegate handler) — subscribes to the cluster event with the given name:
= eventName — the name of the event, including the «class name, for example,
Ultima.Scripting. MyService. MyEvent;
= handler—event handler called when an event is raised;
e Unsubscribe(string eventName, Delegate handler) — unsubscribes from the cluster event with the
given name:
= eventName — the name of the event, including the «class name, for example,
Ultima.Scripting.MyService.MyEvent;
= handler —event handler called when an event is raised;
e Broadcast(string eventName, bool cascade, EventArgs args) — raises the cluster event with the given
name:
= eventName — the name of the event, including the «class name, for example,
Ultima.Scripting.MyService. MyEvent;
= cascade —indicates that neighbor servers should also call Broadcast method for their neighbors;
= args —event arguments class (should be serializable).
e Broadcast(string eventName, EventArgs args) —raises the cluster event with the given name, without
the cascading option:
= eventName — the name of the event, including the «class name, for example,
Ultima.Scripting.MyService.MyEvent;
= args —event arguments class (should be serializable).

© 2018 Ultimate 180

ULTRAATE

Developer SOLIn

e GetCurrentCluster() — returns the AppCluster dictionary record, representing the current application
cluster.

e GetCurrentAppServer() —returns the AppServer dictionary record, representing the current application
server.

e GetCurrentConfig() — returns the ClusterConfiguration dictionary record, representing the current
application cluster configuration.

e GetPlatformFeatures() — returns the PlatformFeatures instance, describing the current platform
features.

e RestartCurrentAppServer() —restarts the current application server.

e RestartCurrentCluster() —restarts the current application cluster.

IClusterServiceExtensions — extension methods for working with cluster events
Subscribe, Unsubscribe and Broadcast methods take event name as a string, which is error-prone due to
lack of the compile-time checking. IClusterServiceExtensions class provides the same set of methods,
i.e. Subscribe, Unsubscribe and Broadcast, that take expressions referencing the events instead of plain
event names. These methods are recommended to be used instead of the original IClusterService
methods because they automatically address the typos or event renaming issues.
e Subscribe(Expression<Func<TSource, Delegate>> eventExpression, Delegate handler) —subscribes to the
given cluster event:
= eventExpression —expression that references the event property, for example, x =>x.MyEvent;
= handler—event handler called when an event is raised;
e Unsubscribe(Expression<Func<TSource, Delegate>> eventExpression, Delegate handler) — unsubscribes
from the given cluster event:
= eventExpression —expression that references the event property, for example, x =>x.MyEvent,;
= handler —event handler called when an event is raised;
e Broadcast(Expression<Func<TSource, Delegate>> eventExpression, bool cascade, EventArgs args) —
raises the given cluster event:
= eventExpression —expression that references the event property, for example, x =>x.MyEvent;
= cascade —indicates that neighbor servers should also call Broadcast method for their neighbors;
= args—event arguments class (should be serializable).
e Broadcast(Expression<Func<TSource, Delegate>> eventExpression, EventArgs args) — raises the given
cluster event, without the cascading option:
= eventExpression —expression that references the event property, for example, x =>x.MyEvent;
= args —event arguments class (should be serializable).

IConstantManager

The manager (from namespace Ultima) is designed to handle users. Constants are meant for storing
variables used in the software code. Although this type of object the name of the constants is selected
and their value can be changed. Constants - versioned objects therefore can have different values on
different branches. It is not necessary to use constants for preservation of intermediate results of
calculations of scripts. Try to use constants reasonably — for example, for storage of seldom changing
values of dictionary codes.

Bad examples of use of constants:

e ShoplPhone, Shop2Phone — storage of phones of shops in constants is unreasonable, you need to
transfer this value directly to the dictionary of shops.

e ShippingTypeAvia, ShippingTypeRails — constant of this type is better to convert to constant
dictionaries (see Dictionary, Other constants)

Good examples of use of constants:

© 2018 Ultimate 181

ULTRAATE

Developer SOLIn

e ArticlePriceRecalculationThreadCount

e BingKey

ZF Manager interface has the following properties:
e this[string name] —returns or sets value of a constant with the name name.

To view existing and to create new constants it is possible in the dictionary Constants, which is
described in detail in administrator's guide in the chapter "Functional Administrator module".

The system also generates strictly typified class-wrapper for constants for use in scripts:
var fromEmail = Constants.ChangePasswordFromEmail;

For appeal to constants, the special class, generated on all constants in the current branch of metadata,
is used in scripts. Constants are presented by the typified properties in this class, therefore autofilling is
available to the list of constants in the editor of the script text. New constants are available after
compilation and metadata reset.

Class-wrapper is automatically added to all of the generated scripts as Constants property. To use
IConstantManager in scripts is not recommended, as in this case the checking of the name and type of
the constant is lost by the compiler.

Examples of use of constants in a script:

// correct
var prefix = Constants.ArticleBarcodePrefix;

// right
var userList = Constants.WebServiceUsers;

// incorrect!
var maxReserveAmount = (decimal)ConstantManager["MaxReserveAmount"];

Wrapper-Class looks like

Strongly typed wrapper for constant looks like a class with properties, names and types that duplicate
names and types of constants. Values of constants are not threaded in a class body, and requested
dynamically from service IConstantManager. At addition of a new constant, renaming or change of the
type recompilation of metadata is required, at value change — itis not required.

The generated class looks like this:

public class RootConstantGroup

¢ private IConstantManager ConstantManager { get; set; }
public long DefaultFirmID { get { return (long)ConstantManager["DefaultFirmID"]; } }
public decimal MaxReserve { get { return (decimal)ConstantManager["MaxReserve"]; } }
}

© 2018 Ultimate 182

ULTRAATE

Developer SOLIn

Constants of documents subtypes

The constants, which can be used in the scripts and application modules, are generated automatically for
the subtypes of documents.

The names of constants correspond to the names (Name) of subtypes, which are set in the tab
"Subtypes" of document type. In case of saving of the document type, the constants will be generated
for all of its subtypes.

Advantages of use of named constants:
e readability (it can be seen immediately what the type it is);
e impossibility to indicate existing subtype or subtype of another's document type.

Example of use:
doc.SubtypeID = ReserveDocument.Subtypes.Reserve;

Constants become available to use in scripts after compilation and updating of assembly of metadata.
Dictionary constants

For dictionaries the constants are generated, specified in the list of constants in the form of editing of
the dictionary. These constants are compiled together with metadata of dictionaries and put into the
code together with their values. It makes sense to create constants of dictionaries in small dictionaries-
listings: Types of agents, Currencies, Languages and so on. Constants are usually not necessary in
dictionaries like Agents or Goods.

Use these constants when values of constants in principle can not be changed. Examples of suitable
constants of dictionaries:

e Language.Constants.English — an English code language
e Currency.Constants.Ruble — a currency code is Ruble
e Barcode.Constants.Empty — a code for an empty barcode.

Example of use:
doc.CurrencyID = Currency.Constants.Ruble;

Constants become available to use in scripts after compilation and updating of assembly of metadata.
System constants

The system constants are described in &F UltimaConstants class:
e CompanyName;

Copyright;

Trademark;

FullVersionString.

IDictionaryCommandManager

The manager (from namespace Ultima.Scripting) is intended for work with commands on dictionary
record.

5 The interface of IDictionaryCommandManager implements the following methods:

e GetDictionaryCommands(long dictionaryld) — returns the list of commands which can be carried out
over record of the specified dictionary:
= dictionaryld —dictionary identifier;

© 2018 Ultimate 183

ULTRAATE

Developer SOLIn

e GetCommandsScriptHotkeys(long dictionaryld) — returns the list of hot keys for calling commands,
which can be carried out over record of the specified dictionary:
= dictionaryld —dictionary identifier;

e ExecuteCommand(long id, long recordld, [Dictionary<string, object> parameters) — executes the
command on the specified dictionary record, returns the list ClientActions to perform on the client
side:
= jd —identifier of the dictionary record command;
= recordld —dictionary record ID;
= parameters —parameters of command execution.

IDictionaryListCommandManager

The manager (from namespace Ultima.Scripting) is intended for work with dictionary list commands (list
of records).

LT The interface of IDictionaryListCommandManager implements the following methods:

e GetDictionaryListCommands(long dictionaryld) —returns the list of commands which can be carried out
over list of records record of the specified dictionary:
= dictionaryld —dictionary identifier;

e GetCommandsScriptHotkeys(long dictionaryld) — returns the list of hot keys for calling commands,
which can be carried out over the list of records of the specified dictionary:
= dictionaryld —dictionary identifier;

e GetDictionaryCaption(long scriptld) —returns the description of the dictionary for a script of command
which is executed over the list of its records:
® scriptld —script command identifier;

e ExecuteCommand(long id, long records, IDictionary<string, object> parameters) — executes the
command on the specified dictionary records, returns the list ClientActions to perform on the client
side:
= jd —identifier of the dictionary record command;
= records —dictionary records identifiers;
= parameters —parameters of command execution.

IDocumentCommandManager

The manager (from namespace Ultima.Scripting) is intended for work with commands on the document.

L The interface of IDocumentCommandManager implements the following methods:

e GetDocumentCommands(long docSubtypeld) — returns the list of commands which can be carried out
over the document of the specified subtype:
® docSubtypeld —document subtype identifier;

e GetCommandsScriptHotkeys(long docSubtypeld) —returns the list of hot keys for calling commands,
which can be carried out over the document of the specified subtype:
= docSubtypeld —document subtype identifier;

e ExecuteCommand(long id, long documentld, IDictionary<string, object> parameters) — executes the
command on the specified document, returns the list ClientActions to perform on the client side:
= jd —identifier of the document command;
= documentid —document ID;
= parameters —parameters of command execution.

© 2018 Ultimate 184

ULTRAATE

Developer SOLIn

IDocumentListCommandManager

The manager (from namespace Ultima.Scripting) is intended for work with commands on the list of
documents.

L The interface of IDocumentListCommandManager implements the following methods:

e GetDocumentlListCommands(long docTypeld) — returns the list of commands which can be carried out
over the list of documents of the specified subtype:
® docTypeld —document type ID;

e GetCommandsScriptHotkeys(long docTypeld) — returns the list of hot keys for calling commands,
which can be carried out over the list of documents of the specified type:
® docTypeld —document type ID;

e ExecuteCommand(long id, long[] documents, IDictionary<string, object> parameters) — executes the
command on the specified documents, returns the list ClientActions to perform on the client side:
= jd —identifier of the documents list command;
= documents —document IDs;
= parameters —parameters of command execution.

© 2018 Ultimate 185

ULTRAATE

Developer SOLIn

IEmailService

The manager (from namespace Ultima) is intended for work with service of sending e-mail messages.
ZF Manager interface IEmailService realizes methods, sending messages (e-mail):

e SendMail(EmailMessage message, EmailOptions emailOptions = nulll — an asynchronous
method for sending messages:

e message — message for sending. It contains the following properties and methods:
= AddressFrom — sender's address;
= AddressFromName — sender’ name;

= AddressTo — destination address;

AddressToName — recipient name;

Subject — heading;

Body — letter text;

IsHtmIBody — flag, indicating that the message body is transmitted in Html format;

AttachFile — adds the file attachment to the message;

EmbedFile — builds in the specified file of attachment (for example, the image) into the
message body.

e emailOptions — settings of sending of the message (optional parameter), contains the
following properties:

= SmtpServerlD — server code from the dictionary of SMTP servers;
= SendOnRollback — sends the message, only if the current transaction is cancelled;
= ScheduledSendingTime — time of message sending;

= AllowedSendintervalFrom — lower bound of an allowable sending interval (time of a
day);

= AllowedSendintervalTo — upper bound of an allowable sending interval (time of a day).

Outdated method:
e SendMail(string addressTo, string addressToName, string subject, string body,
string addressFrom, string addressFromName, bool isHtmIBody = false,
string[] attachementFiles = null, string[] embeddedFiles = null) — a synchronous method of
sending:
» gddressTo —e-mail of the letter recipient;
= AddressToName — letter recipient name;
= subject —letter subject;
® body — letter body;
= gddressFrom —e-mail of the letter sender;
= AddressFromName — letter sender’s name;
= jsHtmIBody —the flag, specifying that the text in the body of the letter has HTML format;
= gttachementFiles —the attached files (names of files at a disk);
= embeddedFiles —builtin (in a letter body) files (names of files at a disk).
This method sends the message synchronously, blocking the current transaction for the period of
sending.
Itis marked as outdated and forbidden to use.

© 2018 Ultimate 186

ULTRAATE

Developer SOLIn

IExportManager

The manager (from Ultima namespace) is designed to work with print form export service.

L} The interface of IExportManager implements the following methods:

e Export(ExportFormat options, long printFormld, PrintFormParameters parameters) exports the
specified print form, not associated with any object, into the specified format:
= options —a format, which the exportis carried out into, can assume values:

» Pdf —pdf format;
= X/s —excel format;
= XIsx —excel format;
Rtf —rtf format;
Html-html format;
" /mage —image;
= printFormld —print form ID;
= parameters —additional print parameters;

e ExportDictionaryRecord(Type dictionaryType, long recordld, long printFormld, ExportFormat options,
IDictionary<string, object> parameters = null) exports the print form of specified dictionary record into
the specified format:
= dictionaryType —dictionary type;
= recordld —dictionary record ID;
= printFormld — print form ID;
= options —a format, which the exportis carried out into;
= parameters —additional print parameters (default value is null);

There is also typed version of this method ExportDictionaryRecord<T>(this IExportManager manager,
long recordld, long printFormld, ExportFormat options, IDictionary<string, object>parameters = null);

e ExportDictionarylist(Type dictionaryType, long[] recordLlist, long printFormld, ExportFormat options,
IDictionary<string, object> parameters = null) exports the print form of specified dictionary records
into the specified format:
= dictionaryType —dictionary type;
= recordld —a list of IDs of dictionary records;
= printFormld — print form ID;
= options —a format, which the export is carried out into;
= parameters —additional print parameters (default value is null);

There is also typed version of this method ExportDictionarylList<T>(this IExportManager manager,
long[] recordLlist, long printFormld, ExportFormat options, IDictionary<string, object> parameters =
null);

e ExportDocument(long documentld, long printFormld, ExportFormat options, IDictionary<string, object>
parameters = null) exports the print form of specified document into the specified format:

* documentld —document ID;

= printFormld — print form ID;

= options —a format, which the exportis carried out into;

= parameters —additional print parameters (default value is null);

e ExportDocumentList(long[] documentList, long printFormld, ExportFormat options, IDictionary<string,
object> parameters = null) exports the print form of specified documents into the specified format:
= documentList—a list of documents IDs;
= printFormld — print form ID;
= options —a format, which the export is carried out into;
= parameters —additional print parameters (default value is null);

© 2018 Ultimate 187

ULTRAATE

Developer SOLIn

Example of use of APl export:

// values of parameters

long recordId = 1;

long documentId = 1;

long printFormId = 1;

var parameters = new Dictionary<string, object>();
parameters["Paraml"] = "test";
parameters["Param2"] = "parameter";

// export the print form of dictionary record into pdf format

var actionl = new SaveFileAction("exp.pdf",
ExportManager.ExportDictionaryRecord<Language>(recordld,
printFormId, ExportFormat.Pdf, parameters));

// export the print form of the document into rtf format

var action2 = new SaveFileAction("exp.rtf",
ExportManager. ExportDocument(documentId,
printFormId, ExportFormat.Rtf, parameters));

ILinkTableManager

The manager (from namespace Ultima.Dictionaries) is designed to handle link tables.

LZT The interface of ILinkTableManager implements the following methods:
e GetRecords(Type linkTableType, LambdaExpression selectExpression, LambdaExpression
filterExpression) returns a table of link table records meeting the filter condition:
» [inkTableType —link table type;
= selectExpression —an expression describing which of link table columns values will be loaded. If null
is indicated as parameter value —the values of all columns will be loaded;
= filterExpression —an expression describing which dictionary record will be loaded (see details in the
section Filters);
e GetRecords(Type linkTableType, LambdaExpression selectExpression, string dictionaryKeyName, long
dictionaryKeyValue) returns a table of link table records meeting the specified values:
= [inkTableType —link table type;
= selectExpression —an expression describing which of link table columns values will be loaded. If null
is indicated as parameter value —the values of all columns will be loaded;
= dictionaryKeyName —a name of dictionary property for filtration;
= dictionaryKeyValue —a value of dictionary property for filtration;
e SaveRecords(Type linkTableType, ILinkTable recordCollection) saves the collection of link table records:
= JinkTableType —link table type;
= recordCollection —a table of records being saved;
e SaveRecord(Type linkTableType, ILinkTableRecord record) saves the link table record:
= linkTableType —link table type;
® record —arecord being saved;
e DeleteRecords(Type linkTableType, ILinkTable recordCollection) deletes the collection of link table
records:
= JinkTableType —link table type;
= recordCollection —a table of records being deleted;
e DeleteRecords(Type linkTableType, LambdaExpression filterExpression) deletes the link table records
meeting the filter condition:
= JinkTableType —link table type;
= filterExpression — an expression describing which dictionary record is deleted (see details in the
section Filters).

© 2018 Ultimate 188

ULTRAATE

Developer SOLIn

There is also typed ILinkTableManagerT class with similar methods:
LinkTableManager.SaveRecords(typeof(price list), list);

LinkTableManager<price list>.SaveRecords(list);

ILogger and ILogManager

Manager ILogger(from namespaceUltima.Log) is intended for use functional libraries Serilog, through
which central logging is implemented.

ZF Manager interfacellogger consist the set of methods for logging events with different levels of
importance: Debug(), Info(), Verbose(), Warn(), Error() v Fatal().

For import of service it is recommended to use ILogger <T>interface parametrized by class user type. If
ILogger without parameter is imported, the log entry is added on behalf of «Server» and if lLogger
<MyClass>is imported — that record will be on behalf of «MyClass» Such records easier to search, filter
and group by class source:

[Import]

private ILogger<MyService> Logger { get; set; }

Serilog uses simple DSL to define names for additional properties of logging event. Synthaxis of DSL is
similar to formating lines for method string. Format:

Logger.Debug("Saving document {DocumentID}, created by {UserID}", docId, userId);

As a result of this call the event with two properties of scalar type will log: DocumentID and UserlID.
Syntaxstring.Format with numbered parameters like {DocumentID} is also supported.

Named logger can be received by usual way:
LogManager.GetLogger (”MyLoggerName™);

without ILogManager (from namespaceUltima.Log):
var newLogger = Logger.Named("NewLoggerName");

The more interested example of usinf Serilog - is saving the properties of structural type (provides
arrays, classes, structures, hash-table, dictionaries and documents):

var parameters = new Dictionary<string, object>();
parameters["id"] = id;
parameters["limit"] = maxValues;

Logger.Verbose("Executing command: {SQL:1} with parameters: {@Parameters}",
sqlCommand, parameters);

In this case all parameters list will be added to the logging event and record about of command with
definite value of parameter can be found in log.

While logging exclusions their inner structure will saved, including HResult, CallStack properties and
InnerException chain. To log the exclusion,you need to transfer it as the first parameter to logging
methods:

Logger.Error(ex, "Cannot execute user task: {Message}", ex.Message);

Exclusion loging methods let adding any additional parameters to the message text.

© 2018 Ultimate 189

ULTRAATE

Developer SOLIn

Special destructurizator added for dictionary and documents logging. It serves as standard, but cuts over
information from objects: Descript of class, property IsPropertyChanged and i.e.:

Logger.Debug(”Brand #{BrandID} contents: {@Brand}", brand.ID, brand);

// message in log
// Brand #12 contents: Brand { ID: 12, Name: "Pineapple" }

You should carefully use and don’t abuse of document logging as documents usually is heavier than
dictionaries, and saving them into the journal cause ending the resources of storage. Typical result of
document logging is:

Document #101187 is saved. Document contents: SaleDocument { ActualInvoiceDocumentID:
null, AgentID: 636, AllowPartialRelease: False, Amount: 5500, AmountDistributionTypelD:
null, ArticlesQuantity: 3, ClientDueOnDelivery: 5500, Comments: “noreply”, Convertation:
null, CreationDate: ©2/06/2015 22:21:53, CreatorID: 7, CustomerSupplyContractID: null,
DeadDate: ©2/11/2015 22:21:53, Deleted: False, DeliveryActive: False, Description: "Sales
(Picking) #101187, 2/6/2015", ExplicitDeadDate: False, FirmID: 14, ID: 101187,
InterstoreResupply: False, KickbackAgentID: null, KickbackAmount: null, KickbackTypelD:
null, ManagerID: null, OfficeID: 38, PickupDate: null, PowerOfAttorneyID null,
PriceTypeID: 1, PriceZonelID: 6, RowsCount: 5, SaleTerminalID: null, StoreID: 522,
SubtypeID: 4131, TotalsList: "4251", TransactionDate: ©2/06/2015 22:21:53, TypeID: 4111,
Version: 12, Volume: 0.001442, Weight: 2.70, ActualInvoiceDocument: null, Agent: null,
AmountDistributionType: null, Creator: null, CustomerSupplyContract: null, Firm: null,
KickbackAgent: null, KickbackType: null, Manager: null, Office: null, PowerOfAttorney:
null, PriceType: null, PriceZone: null, SaleTerminal: null, Store: null, Subtype: null,
Type: null, ArticleBarcodes: [], ArticleCcds: [ArticleCcdTablePartRow { ArticleID: 491967,
CcdID: 1, Checked: False, Deleted: False, DocumentDeleted: False, DocumentID: 101187, ID:
5686087, Quantity: 1, TablePartEntryID: 12422, TransactionDate: ©2/06/2015 22:21:53,
Article: null, Ccd: null, Document: null, TablePartEntry: null }, ArticleCcdTablePartRow
{ ArticleID: 491964, CcdID: 53, Checked: False, Deleted: False, DocumentDeleted: False,
DocumentID: 101187, ID: 5686088, Quantity: 2, TablePartEntryID: 12422, TransactionDate:
02/06/2015 22:21:53, Article: null, Ccd: null, Document: null, TablePartEntry: null }],
Articles: [SaleArticleTablePartRow { Amount: 3300, ArticleID: 491967, Checked: False,
Deleted: False, DocumentDeleted: False, DocumentID: 101187, ID: 5686089,
NotReservedQuantity: ©, OriginalPrice: 3300, ReservedQuantity: 1, ResupplyQuantity: o,
SalePrice: 3300, SaleQuantity: 1, TablePartEntryID: 5229, TransactionDate: 02/06/2015
22:21:53, Article: null, Document: null, TablePartEntry: null }, SaleArticleTablePartRow
{ Amount: 2200, ArticleID: 491964, Checked: False, Deleted: False, DocumentDeleted: False,
DocumentID: 101187, ID: 5686090, NotReservedQuantity: @, OriginalPrice: 1100,
ReservedQuantity: 2, ResupplyQuantity: @, SalePrice: 1100, SaleQuantity: 2,
TablePartEntryID: 5229, TransactionDate: 02/06/2015 22:21:53, Article: null, Document:
null, TablePartEntry: null }, SaleArticleTablePartRow { Amount: @, ArticleID: 492060,
Checked: False, Deleted: False, DocumentDeleted: False, DocumentID: 101187, ID: 5686091,
NotReservedQuantity: 1, OriginalPrice: 8700, ReservedQuantity: ©, ResupplyQuantity: o,
SalePrice: 8700, SaleQuantity: @, TablePartEntryID: 5229, TransactionDate: 02/06/2015
22:21:53, Article: null, Document: null, TablePartEntry: null }, SaleArticleTablePartRow
{ Amount: @, ArticleID: 492075, Checked: False, Deleted: False, DocumentDeleted: False,
DocumentID: 101187, ID: 5686092, NotReservedQuantity: 1, OriginalPrice: 8700,
ReservedQuantity: @, ResupplyQuantity: @, SalePrice: 8700, SaleQuantity: 0,
TablePartEntryID: 5229, TransactionDate: 02/06/2015 22:21:53, Article: null, Document:
null, TablePartEntry: null }, SaleArticleTablePartRow { Amount: @, ArticleID: 492077,
Checked: False, Deleted: False, DocumentDeleted: False, DocumentID: 101187, ID: 5686093,
NotReservedQuantity: 1, OriginalPrice: 8600, ReservedQuantity: @, ResupplyQuantity: @,
SalePrice: 8600, SaleQuantity: @, TablePartEntryID: 5229, TransactionDate: 02/06/2015
22:21:53, Article: null, Document: null, TablePartEntry: null }], Delivery: [],
DeliveryWizard: [], DistribKickback: [], ExcludedArticles: [] }

© 2018 Ultimate 190

ULTRAATE

Developer SOLIn

If the document needs to be saved in log, but you don’t want to duplicate the content in text message,
you can add it only to the properties and it will not mention in the text of message. You can do it using
the method With:
var doc = DocumentManager.GetDocument(documentId);
Logger.With("Document", doc).

Debug(@"Document #{DocumentID} is saved. Document contents: {$DocTitle}",

doc.ID, doc);

// message in log:
// Document #101187 is saved. Document contents: "Sales (Picking) #101187, 2/6/2015"

Using this method you can mark log events group, relating to one subject. For examples, in recounting of
prices you can add the good code to each message:
logger = Logger.With("ArticleID", 123);

logger.Info("Recalculating prices...");
logger.Warn(ex, "Can't recalculate prices due to {Cause}", ex.Message);

The last way - adding the property to all messages in block using. It let to transfer logger back and forth
between methods and services:

//to all events in block using ArticleID property will be added
using (LogManager.With("ArticleID", article.ID))

Logger.Debug("Processing article: {ArticleName}", article.Name);
PriceService.RecalculatePrices(article.ID);
DescriptionService.ValidateDescription(article.ID);
PhotoService.MakePhotos(article.ID);

Logger.Debug("Done with article: {ArticleName}", article.Name);

INotificationService

The manager for working with INotificationService realizes the following methods:
e NotifyUserOnSuccess(long toUserld, long notifyCategoryld, string title, string text, ClientAction action,
Notificationlcon icon) — sends a notification after the successful completion of the server call:
= toUserld — user ID to which the message is sent;
= notifyCategoryld — category notification identifier;
= title — notification title;
= text — notification text;
= action — ClientAction, transferred with the notification which can be executed by the user;
= jcon — notification icon (by default the notification is sent without icons).
e NotifyUserOnFail(long toUserld, long notifyCategoryld, string title, string text, ClientAction action,
Notificationlcon icon) — sends a notification after interruption of a server call by any exception:
= toUserld — user ID to which the message is sent;
= notifyCategoryld — category notification identifier;
= title — notification title;
= text — notification text;
= action — ClientAction, transferred with the notification which can be executed by the user;
= jcon — notification icon (by default the notification is sent without icons).
e NotifyUserlmmediately(long toUserld, long notifyCategoryld, string title, string text, ClientAction
actionNotificationlcon icon) — sends a notification immediately:
= toUserld — user ID to which the message is sent;
= notifyCategoryld — category notification identifier;
= title — notification title;
= text — notification text;

© 2018 Ultimate 191

ULTRAATE

Developer SOLIn

= action — ClientAction, transferred with the notification which can be executed by the user;

= jcon — notification icon (by default the notification is sent without icons).

MarkNotificationsRead(IDList notificationList) — marks the specified notifications as read:

= notificationList — ids notification list;

GetUnreadNotificationsCount(long? userld = null) — returns the number of notifications unread by the

user:

= yserld — user id. If to specify null as value of parameter — the number of unread notifications of
the current user will be returned;

GetUnreadNotifications() — returns the list of identifiers of unread notifications;

GetNotifications(DateTime? fromDate, DateTime? toDate, long? categoryld = null, bool unreadOnly =

true, long? userld = null) — returns the list of notifications that meet parameters:

» fromDate — start of the time interval in which the notification was sent;

= toDate — end of the time interval in which the notification was sent;

= categoryld — category notification identifier. If to specify null as value of parameter — the
notifications of all categories will be returned;

= unreadOnly — if to specify true, as the value of parameter, only unread notifications will be
returned;

= yserld — user ID, to which notifications were sent. If to specify null as value of parameter — the
notifications sent to the current user will be returned;

GetCategoryName(long categoryld) — returns the name of the specified category of notifications:

= categoryld — category notifications identifier.

EventHandler<NotificationEventArgs> NotificationSent — event handler, executed after the
notification sending;
EventHandler<NotificationEventArgs> NotificationRead — event handler, executed after the

notification reading.

IPrintManager

A batch print queue is implemented in the system Ultimate AEGIS®. Namely, several print tasks as a
single package may be sent to print. This means that the tasks sent will be printed in the given order,
and no foreign tasks will be squeezed between them. Thus, to print from the handler one will need to
create a package and add needed tasks into it. The tasks themselves can be either delayed (the print
form data generation handler will be called in asynchronous manner from another transaction) or
synchronous —the handler will be called immediately. The latter option makes the execution of a server
call longer, however, if there is a risk of change in data before the task has been printed, the
synchronous option would be better to use.

ZEF The interface of manager IPrintManager (from the Ultima.Printing namespace) impements the

following methods:

e CreatePackage(long printerld) creates a new print package PrintPackage for the printer specified:

= printerld —printer's ID;

On the client side, this package is to be completed with tasks by methods of the class & PrintPackage:
var pack = PrintManager.CreatePackage(printerId);
pack.AddDictionaryRecordTask(typeof(Good), goodId, printFormId, copies, parameters);
PrintManager.Print(pack);

Print(PrintPackage pack) — synchronous print of the completed package —theGetData method for all

tasks is called, and the package gets added to the print queue:

® pack — print package;

PrintDelayed(PrintPackage pack) —asynchronous print —the package gets added to the print queue:

= pack — print package;

© 2018 Ultimate 192

ULTRAATE

Developer SOLIn

The interface implements methods for single tasks as well. These are used when it is not necessary to
create a package (in fact, a package including a single task will be created anyway). Each method is
implemented in two versions: for synchronous and asynchronous prints. While in synchronous printing,
an object with print form data is immediately calculated and created (the client awaits the completion
of the process). While in asynchronous (delayed) printing, the data will be created afterwards:

e Print(long printerld, long printFormld, long copies = 1, IDictionary<string, object> parameters = null) — a
synchronous print of a print form not related to a particular object:
= printerld — printer's ID;
= printFormld —print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

e PrintDelayed(long printerld, long printFormld, long copies = 1, IDictionary<string, object> parameters =
null) —a method of asynchronous print similar to the previous one;

e PrintDictionaryRecord(long printerld, Type dictionaryType, long recordld, long printFormld, long copies
=1, IDictionary<string, object>parameters = null) — synchronous print of a (single) dictionary record:
= printerld —printer's ID;
= dictionaryType —dictionary type;

» recordld —dictionary record ID;

= printFormld — print form ID;

= copies —number of printed copies (default value is 1);

= parameters —additional print parameters (default value is null);

There is also a typified version of this method: PrintDictionaryRecord<T>(this IPrintManager manager,
long printerld, long recordld, long printFormld, long copies = 1, IDictionary<string, object> parameters =
null);

e PrintDictionaryRecordDelayed(long printerld, Type dictionaryType, long recordld, long printFormld, long
copies = 1, IDictionary<string, object> parameters = null) —a method of asynchronous print similar to
the previous one.

There is also a typified version of this method: PrintDictionaryRecordDelayed<T>(this IPrintManager
manager, long printerld, long recordld, long printFormld, long copies = 1, IDictionary<string, object>
parameters = null);

e PrintDictionarylList(long printerld, Type dictionaryType, IDList recordList, long printFormld, long copies =
1, IDictionary<string, object> parameters = null) —synchronous print of a dictionary records list:
= printerld — printer's ID;
= dictionaryType —dictionary type;
= recordList-a list of dictionary records IDs;
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

There is also a typified version of this method: PrintDictionaryList<T>(this IPrintManager manager,
long printerld, IDList recordList, long printFormld, long copies = 1, IDictionary<string, object> parameters
=null);

e PrintDictionaryListDelayed(long printerld, Type dictionaryType, IDList recordList, long printFormld, long
copies = 1, IDictionary<string, object> parameters = null) —a method of asynchronous print similar to
the previous one.

There is also a typified version of this method: PrintDictionaryListDelayed<T>(this IPrintManager
manager, long printerld, IDList recordList, long printFormld, long copies = 1, IDictionary<string, object>
parameters =null);

e PrintDocument(long printerld, long documentld, long printFormld, long copies = 1, IDictionary<string,
object> parameters = null) —synchronous print of a (single) document:
= printerld —printer's ID;
= documentld —document ID;
= printFormld — print form ID;

© 2018 Ultimate 193

ULTRAATE

Developer SOLIn

= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

e PrintDocumentDelayed(long printerld, long documentld, long printFormld, long copies = 1,
IDictionary<string, object> parameters = null) —a method of asynchronous print similar to the previous
one;

e PrintDocumentlList(long printerld, IDList documentlist, long printFormld, long copies = 1,
IDictionary<string, object> parameters = null) —synchronous print of a documents list:
= printerld —printer's ID;
= documentList —a list of documents IDs;
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

e PrintDocumentlListDelayed(long printerld, IDList documentlist, long printFormld, long copies = 1,
IDictionary<string, object> parameters = null) —a method of asynchronous print similar to the previous
one.

Regardless of how a print task is sent to the printer —either synchronous or delayed —the real sending to
the print server will occur only after the server call, from which the task was sent, has been successfully
completed. If the server call is completed with an error, no sending will occur. To secure the sending of a
task, one needs to create a separate transaction, send the task from it and then to commit the
transaction.

Other methods implemented by the interface are intended to manage the print queue and execute
service tasks:
e GetPrinterslList(long printServerld) — returns the list of printers' system names for the print server
specified:
= printServerld — print server's ID;
e SavePrintStatistics(long userld, string printerName, long printFormld, long versionld, long pages, long
copies) —saves print statistics in the database:
= yserld —ID of the user, who printed the task;
= printerName —name of printer, where the task was printed;
= printFormld — 1D of print form used;
= versionld —metadata version ID;
= pages —number of pages printed;
= copies —number of copies printed;
e BuildNextTask() —fills in the print form of the next queued print task with the data and renders it, if no
data available, i. e. if the task was created by means of the asynchronous method;
e SendNextTaskToPrint() —sends the next queued print task to print;
e MoveTaskToErrorState(long taskld, string errorData) — moves the task into print fault status:
= taskld — print task ID;
= errorData —error data;
e PrinterAlarm(long printerld) —informs the admin on a printer problem:
= printerld —printer's ID;
e PrinterAlarm(string systemName) —informs the admin on a printer problem:
= systemName — printer's system name;
e PrintServerAlarm(long printServerld) —informs the admin on a print server problem:
= printServerld —print server's ID;
e GetPrintServerlD(long printerID) — returns the print server ID for the printer specified:
= printerlD —printer's ID;
e GetFilteredPackageQueue(IDList packagelist, PrintPackageFilter filter, int rowsCountLimiter) — returns
the print packages queue, which satisfies the conditions of the filter:
» packagelist — list of packages IDs. If to put null as a parameter's value, a filter search will be
performed among all print packages;

© 2018 Ultimate 194

ULTRAATE

Developer SOLIn

= filter — filter PrintPackageFilter that describes which packages are to be returned. Class ZF
PrintPackagefFilter — data container for the values of the filter applied to print packages — possesses
the following properties:
» FailedOnly, of booltype —if to specify true as a parameter's value, a filter search will be performed
only among print packages with the failed status;
= StatelD, of long type — print package status ID;
= SessionlID, of string type —GUID of session;
» PrintTimeFrom, of DateTime type — date of the beginning of the period, when the print package
was created;
» DateTime, of DateTime type — date of the ending of the period, when the print package was
created;
= PrintServerlD, of long type — print server ID;
» PrinterlD, of long type —printer ID;
= UserlD, of long type —user ID;
If to specify null as a parameter's value, the search will be performed with the empty filter;
= rowsCountLimiter —returned rows limiter;
e SetPackageState(long packageld, long packageStateld) —sets a status for a print package specified:
= packageld — print package ID;
= packageStateld — package status ID;
e SetPrinterPackagesState(long printerld, long packageStateld) — sets a status for all print packages for
the printer specified:
= printerld — printer's ID;
» packageStateld — print package status ID;
e SetPrintServerPackagesState(long printServerld, long packageStateld) — sets a status for all print
packages for the print server specified:
= printServerld — print server's ID;
= packageStateld — print package status ID;
e SetPackagePrinter(long packageld, long printerld) —sets a printer for the print package specified:
» packageld — print package ID;
= printerld — printer's ID;
e MovePrinterPackagesToPrinter(long printerld, long newPrinterld) — moves all print packages from one
printer specified to another:
= printerld — D of the printer, from which the packages are to be transferred;
= newPrinterld — ID of the printer, to which the packages are to be transferred;
e CleanupPackage(long packageld) —remove the print package specified:
= packageld — print package ID;
e CleanupPrinterPackages(long printerld) — remove all print packages for the printer specified:
= printerld —printer's ID;
e CleanupPrintServerPackages(long printServerld) — remove all print packages for the print server
specified:
= printServerld — print server's ID;
e EventHandler PrintTasksAvailable — event handler implemented after available print tasks has been
created.

[Class PrintPackage (from Ultima.Printing namespace) — data container used to fill in the queued
packages with print tasks —implements the following methods:
e AddTask(long printFormld, long copies = 1, IDictionary<string, object> parameters = null) adds a print
task for the print form, not associated with any object:
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

© 2018 Ultimate 195

ULTRAATE

Developer SOLIn

e AddDictionaryRecordTask(Type dictionaryType, long recordld, long printFormld, long copies = 1,
IDictionary<string, object> parameters = null) —adds a print task of a (single) dictionary record:
= dictionaryType —dictionary type;
= recordld —dictionary record ID;
= printFormld —print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);
There is also a typified version of this method:AddDictionaryRecordTask<T>(this PrintPackage pack,
long recordld, long printFormld, long copies = 1, IDictionary<string, object>parameters = null);
e AddDictionarylListTask(Type dictionaryType, IDList recordList, long printFormld, long copies = 1,
IDictionary<string, object> parameters = null) —adds a dictionary list print task:
= dictionaryType —dictionary type;
= recordList—a list of dictionary records IDs;
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);
There is also a typified version of this method: AddDictionaryListTask<T>(this PrintPackage pack, IDList
recordList, long printFormld, long copies = 1, IDictionary<string, object> parameters = null);
e AddDocumentTask(long documentld, long printFormld, long copies = 1, IDictionary<string, object>
parameters = null) —adds a print task for a (single) document:
= documentid —document ID;
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);
e AddDocumentlistTask(IDList documentList, long printFormld, long copies = 1, IDictionary<string, object>
parameters = null) —adds a document list print task:
= documentList —a list of documents IDs;
= printFormld — print form ID;
= copies —number of printed copies (default value is 1);
= parameters —additional print parameters (default value is null);

Example of API print use:

// values of parameters

long printerIld = 1;

long recordId = 1;

long printFormId = 1;

long copies = 2;

long documentId = 1;

var parameters = new Dictionary<string, object>();
parameters["Paraml”] = "Hello";
parameters["Param2"] "world!";

// print package creation
var pack = PrintManager.CreatePackage(printerId);

// complete package with tasks

pack.AddDictionaryRecordTask(typeof(Language), recordld, printFormId, copies, parameters);
pack.AddDictionaryRecordTask<Language>(recordId, printFormId, copies, parameters);
pack.AddTask(printFormId, copies, parameters);

// send package to printer
PrintManager.Print(pack);

// implicit use of package convenient for sending a single print task
PrintManager.PrintDocument(printerId, documentId, printFormId, copies, parameters);

© 2018 Ultimate 196

ULTRAATE

Developer SOLIn

// default values for copies = 1 and parameters = null
PrintManager.PrintDocument (printerId, documentId, printFormId),

ISmsService

The manager (from namespace Ultima) is intended for work with service of sending of short messages
(SMS).

LF The interface of ISmsService implements the following methods:

e SendMessage(string phone, string message, SmsOptions smsOptions = null) — sends the message
asynchronously:
= phone — mobile phone number;
" message — message text.
= smsOptions — settings of sending of the message, optional parameter.. It contains the following
properties:
e SmppServerlD — server code from the dictionary of SMPP servers;
e SendOnRollback — sends the message, only if the current transaction is cancelled;
e ScheduledSendingTime — time of message sending;
e AllowedSendIntervalFrom — lower bound of an allowable sending interval (time of a day);
e AllowedSendIntervalTo — upper bound of an allowable sending interval (time of a day).

Outdated method:
e Send(string phone, string message) — synchronously sends the message to the specified telephone
number:
= phone — mobile phone number;
*" message —message text.
This method blocks the current transaction for the period of sending of the message.
Itis marked as outdated and forbidden to use.

ITotalsManager

The manager (from namespace Ultima.Totals) is designed to handle totals.

L} The interface of ITotalsManager implements the following methods:

e SaveDocumentTransactions(IDList ~ documentlist, Dictionary<long, TotalLimitDecreaseRequest>
oldTotalLimits, TransactionPairCollection transactionPairs, TransactionCollection transactions) — keeps
transactions of the specified documents:
= documentlList —a list of documents IDs;
= oldTotallLimits —old limit of results for all documents;
= transactionPairs — collection of the pair of transactions for balance totals;
= transactions — collection of the transactions for non-balance totals;

e DeleteDocumentTransactions(IDList documentList) —deletes transactions of the specified documents:
= documentList —a list of documents IDs;

e BuildReport(ReportSetup setup) —build the report:
= setup —report parameters. The format of parameters is defined by a class-container ReportSetup;

e CalculateTotals() —recalculate totals;

e PostTotalLimitDecreaseQueue(DateTime limitDate, long? limitDocumentld = null) — request for
reduction of a limit of results before the specified date or, optionally, the document:
= /imitDate —the date until which the limit of totals should be reset;
® /imitDocumentld —document, before the date of which it is necessary to reset limit totals (optional

parameter);

© 2018 Ultimate 197

ULTRAATE

Developer SOLIn

IUserCommandManager

The manager (from namespace Ultima.Scripting) is intended for work with the user commands.

L} The interface of IUserCommandManager implements the following methods:
e GetUserCommands() —returns the list of all user commands;
e GetAvailableUserCommands() —returns the list of command identifiers, available to the current user;
e ExecuteUserCommand(long id, IDictionary<string, object> parameters) — executes the specified user
command, returns the list ClientActions to perform on the client side:
= jd —user command ID;
= parameters —parameters of command execution.

IUserManager

The manager (from the namespace Ultima) is designed to handle users.

5 The interface of IUserManager implements the following methods and has the following properties:

e CurrentUserlID, type long returns current user ID;

e CurrentUser, type Ultimaldentity returns current user;

e CurrentCulture, type Culturelnfo returns culture of current user;

e GetUserCulture(long userld), type Culturelnfo returns Culturelnfo culture of specified user:
= yserld —user ID;

e GetUsers(), type IList<User>returns a list of all users in the format: ID, name and login;

e RenewPassword(string oldPasswordHash, string newPasswordHash) changes the password for current
user provided for that the hash sum of existing password coincides with the password hash sum
stored in the database:
= oldPasswordHash —hash sum of existing password;
= newPasswordHash—hash sum of new password;

e GetSystemUsers(), type IDList returns a list of IDs of all system users. In the dictionary Users, these
users are located in the group System and are used for execution of official queries to the database
without direct participation of company employees, e.g. to work with the print server and server for
export, initiation of tasks, etc.

Examples of use:

// get current user ID
var userId = UserManager.CurrentUserID;

© 2018 Ultimate 198

ULTRAATE

Developer SOLIn

IUserMessages

The manager (from namespace Ultima.Client) is designed to handle user messages.

L} The interface of IUserMessages implements the following method:
e CreateUserMessage(UserMessagelmportance importance, string format, params object[] parameters)
creates a message for current user in the current session:
= importance — importance of the message (optional). Enumeration

= B
UserMessagelmportance has the following values: .
- Normal_normal message, . . Messages from 05.02.2015 n X_
= Important —important message (bolded in the list). 2B &
If parameter importance is not used, the message will be created 1810 Yes. Reallyt
with Normalimportance; 18:10 Thisis important message!
» format—a text of the message with (optional) elements of the type - ;Z':!m et €
format {0}, {1} etc., which will be replaced with text equivalents of “18:10 Youreceived new message! X

the values of corresponding objects;
= parameters — an array of objects (optional) to replace the existing
elements of the format. : '| ‘

Example of use:

// values of parameters
object[] msgParams = { "customer", 100 };

// create a message of normal importance
UserMessages.CreateUserMessage(”User {0} has {1} bonuses”, msgParams);

// create a message of high importance

UserMessages.CreateUserMessage(UserMessageImportance.Important, “All your bonuses are
reset to zero!");

Interactive commands

Interactive commands are requested immediately by a user.

User commands

sy

Custom commands — these are the scripts that implement an interface /UserCommand that can be
added to the main menu of the client application, respectively, running thence by the user . The list of
all user settings can be found in the form “User commands":

a

@@ User commands o =
@ d ¢ 2 @7 ¢ Q, o & - & |-
Ohject identity | Caption Guid
primary 3 1971 Newly created command &f6cfe48-5006-4304-b0b3-324f05d320ad
secandary 99 Tecrosan Komariaa yalie {IF013314-A356-4459-BEE4-ASFCASFABETS}

Dictionary window divided into two parts: a tree of the group of commands is displayed to the left, a list
of commands selected on the left of the group is displayed to the right.

© 2018 Ultimate 199

Developer

ULTRAATE

SOLID

Dictionary records can be filtered by shown on screen forms names commands (Caption) and Tags(Tag).

The script of the user command selected in the edit form can be opened directly from the dictionary list
form, having selected item Edit script in the context menu.

Selected command can be executed by selecting

Execute in this context menu:

_?, User commands = = 22
e 7 & & e F & Q Q E |~
Name Object identity ~ | Caption
v User commands b 6084§Benchmark user roles # Edit
v Testgroup 8831 Account statement import O e
Test sub Elete
sstsbgrodp 18558 Geocoding test
mesobaley B

L Edit script

Button on the tool panel of the form of editing the user command execute the same function and let to
execute the command immediately:

Py User commands, 1971

+[User commands: 1971 il nofiles - en

Command

Caption Send a test message to a current user
Guid

Script Click here to edit the script...
Folder User commands

Parameters None Parameter list
Parameter form

Icon

B¥E=
e
&

Ctrl

Large icon

Hotkey Alt |7 Shift - x|qQ

User help
Metadata tags

Edit

user-message

Developer's comments
This's a test command which was created for the documentation.

#F

Parameters

en o

547de153-bb10-4d06-ba7a-6258ea5907¢ &

Name
¥ |UserlD
= Text

Custom form

Q| @
Type Identity
Long — NUMBER(18)
Text — VARCHAR2(2048)

Caption
User ID
Message text

Is Required | Save Histary | String Size | Sort Index | Default Value

oK Save Cancel

Referenced Dictionary ID
256 0
256 0

{none)

{none)

The user command has the following properties:
e Caption —command name displayed in the screen form;
e Guid —is used to identify a menu item.

Guid is generated automatically at random and, if necessary, (in case of coincidence with Guid of
another object) can be changed:

Guid | 33cD1ade-e476-4825-9cd5-d5f363a7a372 & ——b 33c0 1a4e-e476-4325-9cd9-d5f363a78372 | 4 ——b 73e790ff-03e2-4d13-820a-1af09593925b8 |+
Script —link to the script. In case of creation of new user command, the script is created automatically
upon its saving. Click the link Click here to edit the script... during creation of new user command will
result into saving of the command and its reloading, after that the script edit form will open;

Folder —a group, the command belongs to;

Parameters —application of additional parameters before execution of user command:

= None —no additional parameters are requested;

= Parameter list — execution of the command will be preceded with opening of the form, to be
generated with Ultimate AEGIS® system, where the user is offered to fill in additional parameters,
described in the list Parameters in the right part of the command edit form:

= Custom form —execution of the command will be preceded with opening of special additional form
(designed by the application developer), in which the user will be offered to fill in a number of
parameters.

© 2018 Ultimate

200

ULTRAATE

Developer SOLIn

e Parameter form —a special form with additional parameters. Its selection is available if option Custom
form is selected in item Parameters . This form must be preliminary designed by the application
developer, e.g. in Visual Studio, and placed in the shared client module (the process is detailed in the
section Request forms of parameters of interactive commands);

e Jcon —command icon (with the size of 16 x 16 pixels).

The buttons to the right of icon preview area allow:

= —loading the icon;

—saving the icon previously downloaded to the computer;
24 —deleting the icon;

e Large icon —alarge icon (with the size of 32 x 32 pixels);

e Hot Key - keys combination which can open the user command. Using the flags, one or several
functional keys (Ctrl, Alt and Shift) can be selected, and a symbol key can be selected in the control
element to the right of them.

The buttons of the control elements, using which symbol selection is made, allow:

¥ | —to select a symbol;

* | —to delete the selected value;
| —to view, if such shortcut keys occur for any other command:

LT] It is important to remember that user commands is invoked from the main menu, i.e. also in
= any open in this moment screen form, in which also may be available some specific
commands. So it is very important to check = hot keys combinations set for the command
for conflicts. If the system has two commands, which are invokes by the same hot keys
combinationby their pressingwill invoke only one of them, and it is unknown beforehand
the which one.
e User help —a comment to the command, which the end user can see in the form of a hint, dropping
down in case of mouseover at the command. The comments are entered for each of system languages
in the form opened by clicking the link;
e Metadata tags —tags used to describe command functionality;
e Developer's comments —comments of the application developer;
e Parameters — additional parameters to use when executing the command. All these parameters are
used (on the standard form) if option Parameter list is selected in the item Parameter. The parameters
can be filtered by Name in accordance with the text entered in the field "Name". Each parameter has:
= Name —parameter name;
= Caption —name displayed in the screen forms;
= Type Identity — parameter type (see details in the section Data types);
® /s Required —the flag indicating if the parameter is mandatory for fill-in;
= Save History —the flag indicating the need to remember the last value of the parameter entered by
the user;

= String Size (available for the types of data Text and String) — limits the size of parameter value by the
specified value;

= Sort index —index, the parameters are sorted by in the screen form. Any integer numbers can be
used as index values. The parameters will be arranged in the form from top downward in the index
increasing order;

= Default Value (available for all data types except for Binary) —the default parameter value, which is
used in the form of additional parameters;

= Referenced Dictionary ID (available for data type Long)— ID of the dictionary (object), the reference
to which is parameter.

© 2018 Ultimate 201

ULTRAATE

Developer SOLIn

N The tab Permissions allows set up the rights to start the command or check that it is available for one
role at least:

_ay User commands, 8831 = B
+[User commands: 8831 en [2 Start now oK Save Cancel
Command Parameters | {Permissions
Caption Account statement import en Setup roles .
Guid FSbedsff-17a3-4F18-a0ce-D6a4a50a74d= a — Aon * Revoke
Script Click here to edit the script... Administrator =
Folder User commands > Finance director ~
W

Parameters None (©) Parameter list Custom form mepasy
Tcon =3 E =
Large icon gp =

b
Hot key crl Alt shift v |X 9
User help Edit
Metadats tags
Developer's comments

ZFScripts of user commands realize the interface IlUserCommand (from namespace Ultima.Scripting).

+1The following is transferred at script input:
e additional parameters of the command (if they were requested);
e collection of actions ClientActions, which should be executed on the side of client application upon
completion of script operation.

Interface IDictionaryCommand implements a single method, Execute executing the script:
e Execute(IDictionary<string, object>parameters, IList<ClientAction> clientActions);

= parameters —command parameters;

= clientActions —a collection of ClientActions actions.

Dictionary record commands

Document commands are the scripts, implementing IDocumentCommand interface and executed
on the application server over dictionary record while the user selects corresponding item in the menu
“Commands” in the dictionary edit form (or in the context menu, described upon a click of the right
mouse button on the dictionary record in the list form). Dictionary record command can be assigned only
to one dictionary. If you want to perform the same function with recordings of several directories, you
should bring the overall functionality in service (see Services) and create, using this service, an
individual command on the directory record for each of these directories.

A list of all dictionary record commands can be bound in the dictionary "Dictionary commands":

[& bictionary commands o =i

o &= 2 o5 ¢ a Q Q Q] -

MName Identity Caption

» 1721 Calculate agent's deliveries sum

» Primary group

2333 Show all invoices from this agent

Second
Sconoary group 1718 Print agent's balance

1725 Calrulate anent's credit sum

© 2018 Ultimate 202

ULTRAATE

Developer SOLIn

Dictionary window divided into two parts: a tree of the group of commands is displayed to the left, a list
of commands selected on the left of the group is displayed to the right.

Dictionary records can be filtered by the command name displayed in the screen forms (Caption), Text
of its script (Script text), Name of the dictionary, which it is associated with (Dictionary name) and Tags

(Tag).

The script of selected dictionary record command in the edit form can be opened directly from the
dictionary list form, having selected item Edit script in the context menu.

Dictionary record commands has the following properties:

[pictionary commands, 2383 = B

+[Dictionary commands: 2383 il nofiles ~ en oK Save Cancel

Command Parameters

Caption Show all invoices from this agent en = qQl &
BRIy 1592 ~ ||Agents Name | Caption Type Identity Is Required |Save History |String Size |Sort Index | Default Value |Referenced Dictionary 1D
Seript Click here to edit the script... + | Aghame Agent name String — VARCHAR 2(2048) i v 256 0 {none)

Folder Dictionary commands 7 InvNum Mumber of invoices Decimal —NUMBER 256 0 (none)

Parameters None (©) Parameter list Custom form

Parameter form

Tcon ¥ F=3

Hot key | Cirl Alt Shift A - X|Q

User help Edit

Metadata tags

invoices

Developer's comments

Caption —command name displayed in the screen form;

Dictionary —a dictionary, to which records the command is applied;

Script — link to the script. In case of creation of new dictionary record command, the script is created

automatically upon its saving. Click the link Click here to edit the script... during creation of new

dictionary record command will result into saving of the command and its reloading, after that the

script edit form will open;

Folder —a group, the command belongs to;

Parameters —application of additional parameters before execution of a dictionary record command:

= None —no additional parameters are requested;

= Parameter list — execution of the command will be preceded with opening of the form, to be
generated with Ultimate AEGIS® system, where the user is offered to fill in additional parameters,
described in the list Parameters in the right part of the command edit form:

Parameters

- Q| &

Mame |Caption Type Identity Iz Required |Save History |String Size | Sort Index | Default Value |Referenced Dictionary ID

= Custom form —execution of the command will be preceded with opening of special additional form
(designed by the application developer), in which the user will be offered to fill in a number of
parameters.

Parameter form —a special form with additional parameters. Its selection is available if option Custom

form is selected in item Parameters . This form must be preliminary designed by the application

developer, e.g. in Visual Studio, and placed in the shared client module (the process is detailed in the

section parameters of interactive commands request form);

Icon —command icon (with the size of 16 x 16 pixels).

The buttons to the right of icon preview area allow:

? —loading the icon;

L

I —saving the icon previously downloaded to the computer;

© 2018 Ultimate 203

ULTRAATE

Developer SOLIn

44 —deleting the icon;

e Hot Key —shortcut keys, using which a command can be called from the dictionary edit form. Using the
flags, one or several functional keys (Ctrl, Alt and Shift) can be selected, and a symbol key can be
selected in the control element to the right of them.

The buttons of the control elements, using which symbol selection is made, allow:
* | —toselect asymbol;
¥ | —to delete the selected value;

Q| —to view, if such shortcut keys occur for any other command:

Same hot key scripts = B

Script ID | Script Type ID | Caption Seript Type Caption

2 667 Dictionary list command #6638 Dictionary list command

894 667 Dictionary list command #693 Dictionary list command

e User help —a comment to the command, which end the user can see as a hint, dropping down in case
of hovering a cursor over it. The comments are entered for each of system languages in the form
opened by clicking the link;

e Metadata tags —tags used to describe command functionality;

e Developer's comments —comments of the application developer;

e Parameters — additional parameters to use when executing the command. All these parameters are
used (on the standard form) if option Parameter list is selected in the item Parameter. The parameters
can be filtered by Name in accordance with the text entered in the field "Name". Each parameter has:

Name — parameter name;

Caption —name displayed in the screen forms;

Type Identity — parameter type (see details in the section Data types);

Is Required —the flag indicating if the parameter is mandatory for fill-in;

Save History —the flag indicating the need to remember the last value of the parameter entered by
the user;

String Size (available for the types of data Text and String) — limits the size of parameter value by the
specified value;

Sort index —index, the parameters are sorted by in the screen form. Any integer numbers can be
used as index values. The parameters will be arranged in the form from top downward in the index
increasing order;

Default Value (available for all data types except for Binary) —the default parameter value, which is
used in the form of additional parameters;

Referenced Dictionary ID (available for data type Long)— ID of the dictionary (object), the reference
to which is parameter.

© 2018 Ultimate 204

ULTRAATE

Developer SOLIn

N The tab Permissions lets set rights for starting the command or check, that at least one role is
available:

[pictionary commands, 6637 = B
+[Dictionary commands: 6687 en [& 0K Save Cancel
Command Parameters | Permissions
Caption Clone artide en Setup roles -
£
Role Allow Revoke

Script Click here to edit the script... Administrator v
Folder Primary group - msapagy v

W
Parameters None Parameter list Custom form never
Icon P&
Hot key cirl Alt shift - |x|9,

User help Edlt
Metadata tags

Developer's comments

ZF Dictionary record commands scripts realize interface IDictionaryCommand (from namespace
Ultima.Scripting).

+1The following is transferred at script input:
e dictionary record ID;
e additional parameters of the command (if they were requested);
e collection of actions ClientActions, which should be executed on the side of client application upon
completion of script operation.

IDictionaryCommand interface implements a single Execute method, executing the script:

e Execute(long recordld, IDictionary<string, object> parameters, IList<ClientAction> clientActions)
= recordld —dictionary record ID;
= parameters —command parameters;
= clientActions —a collection of ClientActions actions.

Dictionary list commands

E]x Dictionary list commands — are scripts, realizing the interface IDictionaryListCommand, and which
are carried out on the application server over several dictionary records, marked with flags in a list form
when the user choose the corresponding item in the menu "Commands" in a list form of the dictionary.
A dictionary list command can be tied to the only one dictionary. If it is required to execute identical
functions with records of several dictionaries, it is necessary to take out this general functionality into
the service (see the section Services) and to create, using this service, separate dictionary list commands
for each of these dictionaries.

© 2018 Ultimate 205

Developer

ULTRAATE

SOLID

The list of all dictionary list commands can be found in the dictionary "Dictionary list commands":

I__'B Dictionary list commands

o =R

@3 & &

Name

e F & Q Q

Identity Caption
1715 Send message to agent's list
2406 Send e-mail to selected agents

7463 Upload rates for all currencies

The dictionary window is divided into two parts: on the left the tree of commands groups is displayed,

on the right — the list of commands of the group chosen from the left.

Dictionary records can be filtered by the command name Displayed in screen forms (Caption), Text of its
script (Script text), Dictionary name, to which it is tied (Dictionary name) and Tags (Tag).

To open a script of the chosen dictionary list command is possible in the form of editing directly from a

list form of the dictionary, chosen the item Edit script in a context menu.

The dictionary list command has properties completely identical to properties of the dictionary record

command:
i} Dictionary list commands, 673 o B &R

+«E Dictionary list commands: 673 || nofiles = en OK Save Cancel
Command Parameters
Caption Send e-mail to selected agents en - ql s
Dictionary 1582 7 |[Agents Name Caption Type Identity Is Required Save History String Size |Sort Index | Default Value | Referenced Dictionary ID
Script Click here to edit the script... »|UserlD Useridentity Decimal —NUMBER 7 256 0 (none)
Folder Dictionary list commands -
Parameters _JNone (©) Parameter list () Custom form

Parameter form

Icon 1 &b
Hotkey | Ctrl Alt Shift|B
User help Edit
Metadata tags
mailing

Developer's comments

M The tab Permissions allows quick adjusting the rights to run the command or to check that at least one

role has an access to it:

I} Dictionary list commands, 14204 o = 2
+«E Dictionary list commands: 14204 en F] 0K Save Cancel

Command Parameters |
Caption Test command for amortization en Setup roles =

£

Role Allow Revoke
Saript Click here to edit the script... Administrator v
Falder Dictionary list commands -
Parameters () Mome (@) Parameter list (Z) Custom form
Icon YE =
Hot key Ctrl Alt shift x e
User help Edit
Metadata tags
Developer's comments
© 2018 Ultimate 206

ULTRAATE

Developer SOLIn

L Scripts of the dictionary list commands realize the [DictionaryListCommand interface (from the
namespace Ultima.Scripting).

+1The following is transferred to an entrance of the script:
e identifiers of the dictionary records;
e additional command parameters (if they have been requested);
e Collection of actions ClientActions, which should be executed on the part of the client application
on completion of a script work.

The interface IDictionaryListCommand implements only Execute method, which is carrying out the script:
e Execute(long[] records, IDictionary<string, object> parameters, IList<ClientAction> clientActions)

» records — a list of identifiers of the dictionary records;

» parameters — command parameters;

= clientActions — collection of actions ClientActions.

Document commands

ij Document commands are the scripts, implementing IDocumentCommand interface, and executed
on the application server over a document while the user selects corresponding item in the menu
"Commands" in the document edit form (or in the context menu, described upon a click of the right
mouse button on the document in the list form).

A list of all documents commands can be found in the dictionary "Document commands":

(& Document commands o =
F & & > 7 & Q, q, Q -
MName Identity Caption
v Document commands L 5774 Complete picking
E 5777 Release
Purchase 5795 Cash payment
Interstore transfer

£787 Start picking

Dictionary window is divided into two parts: a tree of the commands group is displayed to the left, a list
of commands of the group, selected on the left, is displayed to the right.

The dictionary records can be filtered by the command name displayed in the screen forms (Caption),
Subtype of the document, which it is associated with (Subtype name) and Tags (Tag).

The script of selected document command in the edit form can be opened directly from the dictionary
list form, having selected item Edit script in the context menu.

© 2018 Ultimate 207

ULTRAATE

Developer SOLIn

Document command has the following properties:

[Document commands, 20400 = B &R
«f Document commands: 20400 en [Z & oK Save Cancel
Command Parameters | Document subtypes | Permissions
Caption Show document transactions en o
Script Click here to edit the script...
Name Caption Type Identity | Is required Save history | String size Sortindex Default value | Reference...
Folder Document commands
Parameters 2 None Parameter list Custom form
con FE®
Hotkey Cirl Alt Shift BN

User help Edlt
Metadata tags

Developer's comments

Caption —command name displayed in the screen form;
Script — link to the script. In case of creation of a new document command, the script is created
automatically upon its saving. Click the link Click here to edit the script... during creation of new
document command will result into saving of the command and its reloading, after that the script edit
form will open;
Folder —a group, the command belongs to;
Parameters —application of additional parameters before execution of document command:
= None —no additional parameters are requested;
= Parameter list —execution of the command will be preceded by the form opening, to be generated
with Ultimate AEGIS® system, where the user is offered to fill in additional parameters, described in
the tab Parameters in the right part of the command edit form:
= Custom form —execution of the command will be preceded with opening of special additional form
(designed by the application developer), in which the user will be offered to fill in a number of
parameters.
Parameter form —a special form with additional parameters. Its selection is available if option Custom
form is selected in item Parameters . This form must be preliminary designed by the application
developer, e.g. in Visual Studio, and placed in the shared client module (the process is detailed in the
section Request forms of parameters of interactive commands);
Icon —command icon (with the size of 16 x 16 pixels).
The buttons to the right of icon preview area allow:
I” —loading the icon;
—saving the icon previously downloaded to the computer;
25 —deleting the icon;
Hot Key —shortcut keys, using which a command can be called from the document edit form. Using the
flags, one or several functional keys (Ctrl, Alt and Shift) can be selected, and a symbol key can be
selected in the control element to the right of them.
The buttons of the control elements, using which symbol selection is made, allow:
¥ | —to select a symbol;
* | —to delete the selected value;

| —to view, if such shortcut keys occur for any other command:

User help —a comment to the command, which the end user can see in the form of a hint, dropping
down in case of mouseover at the command. The comments are entered for each of system languages
in the form opened by clicking the link;

© 2018 Ultimate 208

ULTRAATE

Developer SOLIn

Metadata tags —tags used to describe command functionality;
Developer's comments —comments of application developer.

A Inthe tab «Parameters» on the right side of the edit form command additional parameters are listed
that are used when it is executed. All these parameters are used (in the standard form) if option
Parameter list is selected in the item Parameter. The parameters can be filtered by Name in accordance
with the text entered in the field "Name". Each parameter has:

Name — parameter name;

Caption —name displayed in the screen forms;

Type Identity — parameter type (see details in the section Data types);

Is Required —the flag indicating if the parameteris mandatory for fill-in;

Save History — the flag indicating the need to remember the last value of the parameter entered by
the user;

String Size (available for the types of data Text and String) — limits the size of parameter value by the
specified value;

Sort index —index, the parameters are sorted by in the screen form. Any integer numbers can be used
as index values. The parameters will be arranged in the form from top downward in the index
increasing order;

Default Value (available for all data types except for Binary) —the default parameter value, which is
used in the form of additional parameters;

Referenced Dictionary ID (available for data type Long)—ID of the dictionary (object), the reference to
which is parameter.

A in the tab "Document subtypes"”, a list is given for the subtypes of documents, the command is
applied to:

Parameters | Document subtypes

Q, Q, Enabled () Disabled @ Al | 2
Subtype Name Subtype Caption =
» | v AccountableCash
Transfer Transfer =
v AccountStatement
Imported Imported
Processed Processed

+ AgentEmployeeExchange
AgentToEmployees Agent to employees

EmployeesToAgent Employees to agent

The list represents a list of all subtypes of documents grouped by the type. The command will be
available from the edit form of the documents of those types, which are flagged.

The list can be filtered by Type name or Document subtype name in accordance with the text entered
into the fields "Type name" or "Subtype name". The list can be additionally filtered using the flags by
subtypes of documents:

Enable — by all flagged subtypes;
Disable — by all non-flagged subtypes;

o All-by all subtypes irrespective of the set flag.

A filter can be cleared and a full list of subtypes of documents can be displayed by clicking 2.

© 2018 Ultimate 209

ULTRAATE

Developer SOLIn

N The tab Permissions lets set rights for starting the command or check, that at least one role is
available:

Parameters | Document subtypes |

Setup roles *

Role Allow Revoke

Administrator u’

<

yallie

<

msapaey
niever W
Manager Front-office
Manager Back-Hub
Cashier

Purchasing manager
Storekeeper

e e I

ZF Document commands scripts realize the interface IDocumentCommand (from namespace

Ultima.Scripting).

+I1The following is transferred at script input:
e document ID;
e additional parameters of the command (if they were requested);

e collection of actions ClientActions, which should be executed on the side of client application upon
completion of script operation.

IDocumentCommand interface implements a single Execute method, executing the script:

e Execute(long recordld, IDictionary<string, object> parameters, IList<ClientAction> clientActions)
= recordl/d —document ID;
= parameters —command parameters;
= clientActions —a collection of ClientActions actions.

Document list commands

I

[ﬂ Document list commands are scripts, realizing the interface /DocumentListCommand; they are
carried out on the application server over several documents, marked with flags in a list form when the
user choose the corresponding item in the menu “Commands” in a list form of the documents.

The list of all document list commands can be found in the dictionary "Document list commands":

[Document list commands o =

& F S = 2 & & Q Q al |-

MName Identity
v Document list commands b]

Caption

Payable — Approved

Sale 16037 Change responsible employee

16046 Change bank account

The dictionary window is divided into two parts: on the left the tree of commands groups is displayed,
on the right — the list of commands of the group chosen from the left.

© 2018 Ultimate 210

Developer

ULTRAATE

SOLID

Dictionary records can be filtered by the Displayed in screen forms name of the command (Caption),
Document type, to which itis tied (Type name) and Tegs (Tag).

To open a script of the chosen document command is possible in the form of editing directly from a list
form of the dictionary, chosen the item Edit script in a context menu.

Document list command has the properties, completely identical to properties of the document
command with one exception — the document list commands are applied for documents of the chosen

types (but not subtypes):

Developer's comments

[Document list commands, 16037 = B =z
[Document list commands: 168037 en [oK Save Cancel
Command Parameters | Document types | Permissions
Capti Ch ibl I en i
aption ange responsible employee en a ol 2
Script Click here to edit the script...

g z Name Caption | Type Ide... | Is requi... | Save hi... |String s... | Sortin... |Default ... |Referenced diction...
Folder Payment requests b |Respon... Mewre... Long i 4 256 1] Employee
Parameters (T} None (8) Parameter list (7)) Custom form
Icon PR
Hotkey Ctrl Alt Shift *|X|q
User help Edit
Metadata tags

finances

l Inthe tab «Document types» there is a list of all types of documents.

The command will be available

from the list form of documents marked by the flags of the types:

Parameters

o, (") Enabled

Type Mame

b Release12
Release13
Sale
CashPayment
InterstoreTransfer
EmployeeCashPayment
Purchase
DeliveryRepart

|| PaymentRequest

AgentEmployeeExchange
Invoice
FixedAssetincome
FixedAssetincomeFromStore
FixedAssetPutin
FixedAssetTransfer

The list can be filtered by Type name of the document according to text added into the field
name”. Also, a list can be filtered in addition by flags:

Permissions

() Disabled

e Enable — in all types marked by the flags;
e Disable — in all types not marked by the flags;
e All —in all types regardless of the set flag.

© al

o

Type Caption

»

Release 12

Release 13

Sales

Cash payments

Inter store transfers
Employee cash payments
Purchases

Delivery repart

Payment requests

Agent employee exchanges
Invoices

Fixed asset incomes

Fixed asset income from stores
Fixed asset putins

Fixed asset transfers

“

Type

© 2018 Ultimate

211

ULTRAATE

Developer SOLIn

To clear the contents of the filter and to display the complete list of types of the documents is possible
by clicking the key button .

[The tab Permissions allows quickly to adjust the rights to run the command or to check that at least
one role has an access to it:

Parameters | Document types

Setup roles *

Role Allow Revoke
Administrator
finmanager
msapaey

NEVEr

S e

Finance director

EF Scripts of the document list commands realize the IDocumentListCommand (from the namespace
Ultima.Scripting).

+1The following is transferred to an entrance of the script:
e identifiers of documents;
e additional command parameters (if they have been requested);
e Collection of actions ClientActions, which should be executed on the part of the client application
on completion of a script work.

The interface IDocumentListCommand implements only Execute, method, which is carrying out the
script:
e Execute(long[] documents, IDictionary<string, object>parameters, IList<ClientAction> clientActions)

= documents — a list of documents identifiers;

= parameters — command parameters;

= clientActions — collection of actions ClientActions.

ClientActions

ClientActions —the way of transfer from application server to client application of the information about
what actions should be done on client application. You need to create the object of correspondent class
and add it to the transferred collection. If the transfer of client activity collection are not foreseen in the
script interface (for example, Task scripts), nobody act it.

following ClientActions (from manes spaceUltima.Client.Actions):
e CloseFormAction —close present form. This action will be ignored for user command;

© 2018 Ultimate 212

ULTRAATE

Developer SOLIn

EditRecordAction — open the record with stated ID (RecordID) if dictionary type (dictionaryType) for
editing:
public class EditRecordAction : ClientAction

{
}

MessageBoxAction —show the window with text (Message) and title (Title):
public class MessageBoxAction : ClientAction

{

public EditRecordAction(Type dictionaryType, long recordId)

public string Message { get; set; }

public string Title { get; set; }
}
NewRecordAction — open the form for creation a new dictionary record:
public class NewRecordAction : ClientAction

{
public NewRecordAction(Type dictionaryType, IDictionary<string, object>
parameters = null)

}
NewDocumentAction — open the form for creatin a new document:
public class NewDocumentAction : ClientAction

{
public NewDocumentAction(Type documentType, IDictionary<string, object>
parameters = null)

}
OpenDocumentAction —open document with stated ID (DocumentID) for editing:
public class OpenDocumentAction : ClientAction

{
}

PrintDictionaryRecordAction(Type dictionaryType, long recordld) — open one record print dialogue for

selected dictionary type:

= dictionaryType — dictionary type, define the set of print form, available for selecting in print
dialogue;

= recordld —dictionary record ID which should be printed;

PrintDictionaryListAction(Type dictionaryType, long[] records) — open the print dialogue of several

records for selected dictionary type:

= dictionaryType — dictionary type, define the set of print forms, available for selecting in print
dialogue;

= records —dictionary records IDs list, which should be printed;

PrintDocumentAction(long docSubtypeld, long documentld) — open the dialogue of one document

print for selected document type:

= docSubtypeld — document type, identify the set of print forms, available for selecting in print
dialogue;

» documentld —document ID which should be printed,;

PrintDocumentListAction(Type documentType, long[] documents) — open the print dialogue of several

documents for selected document typr:

= documentType — document subtype, dentify the set of print forms, available for selecting in print
dialogue;

= documents —documents IDs list which should be printed;

PrintFormPreviewAction(long printFormld, Dictionary<string, object> parameters) — open the form of

preview of print form:

= printFormld — print form ID;

public OpenDocumentAction(long documentId)

© 2018 Ultimate 213

ULTRAATE

Developer SOLIn

= parameters —print form parameters;

e PrintTextAction — send for printing(Text)in code page (CodePage, value by default 1251) to device
(DeviceName). Name for printing document can becreated (DocumentName, value by default Untitled)
and shoe the window of preview (DistpalyPreview, value by default true):

public class PrintTextAction : ClientAction

! public string DeviceName { get; set; }
public string DocumentName { get; set; }
public int CodePage { get; set; }
public string Text { get; set; }
public bool DisplayPreview { get; set; }

}

e ReloadRecordAction — reload current record. Both editing form and list form will be reloaded This
action will be ignored by user command;
e SaveFileAction —save (script result) to file:
public class SaveFileAction : ClientAction

{

public SaveFileAction(string fileName, DateTime? lastWriteTime = null,
byte[] fileData, bool displayArchiveContents = false)

public SaveFileAction(string fileName, byte[] fileData)
: this(fileName, DateTime.Now, fileData)

// load file for delivering to the client,
// deleteFile parameter delete the file after loading
public static SaveFileAction FromFile(
string serverFilePath,
string clientFilePath = null,
bool deleteFile = false)
}

Also saving failes can be added to zip-archive:

// using Ultima.Client.Actions;
// using Ultima.IO.Compression;

var zip = new ZipBuilder()
.AddText("Sample.txt", "This is a sample file. Stay awed.")
.AddBinary("Sample.dat", new byte[] { 1,2,3,4,5,6,7 })
.AddFile(fileName, delete: true);

clientActions.AddSaveFileAction(zip, displayArchiveContents: true);

= AddText —add text file (name and content of file in the form of lines) to the archive;

= AddBinary —add binary file (file name transfer in the form of line, and content as bytes massive) to
the archive;

= AddFile —add file to the archive. If parameter delete setin true, file will be deleted from server disc
after it adding to the file archive;

© 2018 Ultimate 214

ULTRAATE

Developer SOLIn

= displayArchiveContents —setting the parameter value in true the archive saving dialogue window is
shown to the user

[E] Zip archive contents: archive. zip o B ER
H save archive... | [Exractfile... [l Extract all files... Cancel
MName Extension Date Length
» iSample. txt Lt 17/11/2014 33
Sample.dat .dat 12112014 7
ConsoleServer.exe.Config .Config 8222014 3499

e ShowExceptionAction —show exclusion:
public class ShowExceptionAction : ClientAction

{
}

e ShowTableAction —show table data in the form with grid title control element (Title, value by default —
shown name of the first table from list Tables), accompanying text (/nfo) and settings (SettingsSubkey,
value by default — the name of the first table from list Tables). Parameter Tables can transfer several
tables, every of which will be shown in the own tab:

public Exception Exception { get; set; }

public class ShowTableAction : ClientAction

! public IList<SlimTable> Tables { get; private set; }
public string SettingsSubkey { get; private set; }
public string Title { get; set; }
public string Info { get; private set; }

}

= Switch on/off of table column is ruling by property SlimColumn.Visible.

= Columns with underlining begins automatically mark as invisible.

= |n long type column Dictionary Type can be stated. If this property is empty, records of
this dictionary will be opened by double left mouse button click on the record code cell.

= |f the Title property is empty, SlimTable.Caption property from the first table is used as
the title.

= Values of “ForeColor” and “BackColor” columns use for coloring of table lines. You can use
standard colors name as Red, Maroon or LightCyan, HTML-format #A5C or #AAFF22, and
even integral value ARGB. Columns with such names are hidden by form independent of
Visible flag.

Example of use of API ClientActions:
// using Ultima.Client.Actions;

clientActions.Add(new ReloadRecordAction());

Handlers

Dictionary events handlers

The dictionary events handler is a script executed automatically in case of a number of events occurring
to dictionary records. Own events handler can be created for each dictionary. Click Event script in the
dictionary edit form to create the handler. During creation of new dictionary, the events handler is not
created by default.

© 2018 Ultimate 215

ULTRAATE

Developer SOLIn

The list of handlers of dictionary events can be found in the dictionary "Scripts". Besides, the handler of
events of particular dictionary can be opened from its edit form:

[5 Edit «Agents» = B 22

+[Dictionary: 1592 | % SQL script %P Class code || 5F Event Eipt [iiil Celumn provider script L_'/g oK Save Cancel

Main | Properties | Link tables | Lists | Commands | Print forms

Mame Agents
1
1

v

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache {read-only)
ing System;

System.Collections.Generic;

System.ComponentModel .Compozition;

System.Ling;

Syztem.Text;

System.Threading.Tasks:

Ultima.Metadata;

Ultima.Scripting;

Ultima.Server.Dictionaries;

I
i =]
W
]
0

SR T= I S R N T T U R

11 | namespace Ultima.Scripting.Dictionaries.EventHandlers

13) public partial class AgentsEventHandler

The handlers of dictionary events implement IDictionaryEventHandler interface.

The handler can respond to the following events, which occur to dictionary records:

e BeforeCreate —the handleris executed directly before creation of dictionary record, after the user has
clicked a button for creation of new record.
+Ithe following is delivered at handler input:

e adictionary record being saved,;
e parameters of saving;

e BeforeClone —the handler is executed before the cloning of a dictionary record. It helps to prepare the
record for cloning: clear unnecessary data, replace the record name to remove duplicates, etc.
+Ithe following is delivered at handler input:

¢ the original dictionary record, which is to be cloned;
e additional saving parameters for the new record;

e Afterload —the handleris executed after opening the dictionary record, but is not executed in case of
new record creation. Using the handler, e.g. additional parameters can be loaded into the dictionary
record.
+Ithe following is delivered at handler input:

e adictionary record being opened,;

¢ a flag defining if internal objects of dictionary record will be loaded. The internal objects of
dictionary record are for instance its properties-links. In case of indication of the need in loading
of internal objects as the values for such properties-links, the records will be loaded, which they
refer to, in total. Otherwise, only IDs of the records, which the properties-links refer to, will be
loaded;

e BeforeSave —the handler is executed directly before saving the dictionary record, after the user has
clicked save button. Using the handler, e.g. the data can be checked and, if necessary, modified before
saving.

-+l the saved dictionary record is delivered at handler input;

e AfterSave — the handler is executed after saving of dictionary record, including after execution of
BeforeSave handler, but before transaction commitment. Using the handler, saving can be canceled,
having thrown an exception, and modifications made to the dictionary record can be canceled
(changes cannot be made to already saved dictionary record).
+Ithe saved dictionary record is delivered at handler input;

e SaveFailed — the handler is executed in case of throwing an exception during operation for saving of
the dictionary record.

© 2018 Ultimate 216

Developer

ULTRAATE

+Ithe following is delivered at handler input:
e adictionary record being saved,;
e an exception, thrown during saving;

SOLID

BeforeDelete —the handler is executed directly before deletion of dictionary record, after the user has
clicked deletion button. Using the handler, deletion process can be canceled having thrown an

exception.
+Ithe ID of deleted dictionary record is delivered at handler input;

o AfterDelete — the handler is executed after deletion of the dictionary record (the dictionary record
does not exist any more), including after execution of BeforeDelete handler, but before transaction

commitment. Using the handler, deletion can be canceled having thrown an exception.
+Ithe ID of deleted dictionary record is delivered at handler input;

DeleteFailed —the handleris executed in case of throwing an exception during operation for deletion

of the dictionary record.

+Ithe following is delivered at handler input:
¢ |D of dictionary record being deleted;
e an exception, thrown during deletion.

In addition to the handler of events of particular dictionary (which may be even not created), there is
the common handler of dictionary events CommonDictionaryEventHandler, which responds to the
events, which occur to the records of any dictionary. It responds to the same events but is executed
always before the handler of events of particular dictionary.

The handler of events CommonDictionaryEventHandler can be found in the dictionary "Scripts" or
opened via the list form of the dictionary Dictionaries:

|=| Dictionaries = B =&

Q| [¥] Hide system | & 2 | ¥ Common gvent handler ¢ Filters &

&

Dictionary ID | System name Localized name Kernel dictionary

| p

6! AgentType Agent types

2945 Artide Articles

The sequence of calls of dictionary events handlers:

1

In case of saving:

e BeforeSave event CommonDictionaryEventHandler handler;
e BeforeSave dictionary's event handler;

e saving of the record changes in DB;

e AfterSave event CommonDictionaryEventHandler handler;

e AfterSave dictionary's event handler;

If any error occurs at any stage of saving, the SaveFailed event handler will be called
CommonDictionaryEventHandler, then the dictionary).

In case of deletion:

e BeforeDelete event CommonDictionaryEventHandler handler;
e BeforeDelete dictionary's event handler;

e deletion of the record in DB;

o AfterDelete event CommonDictionaryEventHandler handler;
e AfterDelete dictionary's event handler;

(at first

If any error occurs at any stage of deletion, DeleteFailed event handler will be called (at first

CommonDictionaryEventHandler, then the dictionary).
In case of creation:

e creation of the object of corresponding class;

e receipt of new ID;

e processing of transferred parameters (parameters, which name coincide with the dictionary fields,

are assigned to dictionary fields automatically);

© 2018 Ultimate

217

ULTRAATE

Developer SOLIn

e BeforeCreate event CommonDictionaryEventHandler handler;
e BeforeCreate dictionary's event handler.
4. In case of record loading:
¢ |loading of the record from DB and initiation of the object;
e AfterLoad event CommonDictionaryEventHandler handler;
e Afterload dictionary's event handler.

Document events handlers

The total events handleris a script executed automatically in case of a number of events occurring to the
total. Own events handler can be created for each dictionary. Click Event script in the document type
edit form to create the handler. During creation of new document type, the events handler is not
created by default.

The list of handlers of documents events can be found in the dictionary "Scripts". Besides, the handler of
events of particular dictionary can be opened from its edit form:

E} Document types, 1909 o =i
«| Document types: 1908 | 3% SQLscript f Class code | & Event script || [53 0K Save Cancel
Main | Properties | Table parts | Subtypes | Transactions | Record list print f'ornl;? Record list commands
Mame Order

1
1

Seripttext | Resources | Generated Text (read-only) | Generated Resx {read-only) | MEF Cache (read-only)
1 ing System;
System.Collections.Generic;
Syztem.ComponentModel .Composition;
g System.Ling:;
g System.Text;
ng System.Threading.Tasks:;
using Ultima.Metadata;
ng Ultima.Scripting;
using Ultima.Server.Documents;

L T Y U

I
I
i
o
o

namezpace Ultima.Scripting.Documents.EventHandlers

13 internal partial claszs OrderDocumentEventHandler

The handlers of document events implement IDocumentEventHandler interface.

The handler can respond to the following events, which occur to dictionary records:

e BeforeCreate —the handler is executed directly before creation of document, after the user has clicked
a button for creation of new record. If the document has several original subtypes, execution of
handler will precede opening subtype selecting form.
+Ithe following is delivered at handler input:

e Creating document;
e Creation parameters;

e BeforeClone — handler executed before document cloning. It let to prepare document for cloning:
Clear unnecessary table parts, clear fields, original subtypes and etc.
+Ithe following is delivered at handler input:

e Original document for cloning
e Additional parameters of document creation, including subtype code;

e Afterload —the handleris executed directly before creation of document, after the user has clicked a
button for creation of new record. Using the handler, e.g. additional parameters can be loaded into
the document.
+I1 he following is delivered at handler input:

e Opening document

© 2018 Ultimate 218

ULTRAATE

Developer SOLIn

¢ a flag defining if internal objects of document will be loaded. The internal objects of document
are for instance its properties-links. In case of indication of the need in loading of internal
objects as the values for such properties-links, the records will be loaded, which they refer to, in
total. Otherwise, only IDs of the records, which the properties-links refer to, will be loaded;
BeforeSave — the handler is executed directly before saving dictionary record, after the user has
clicked save button. Using the handler, e.g. the data can be checked and, if necessary, modified before
saving.
+Ithe saved document is delivered at handler input;
AfterSave —the handler is executed after saving of document, including after execution of BeforeSave
handler, but before transaction commitment. Using the handler of this event, saving can be canceled,
having thrown an exception, and modifications made to the document can be canceled (modifications
cannot be made to already saved document).
+Ithe saved document is delivered at handler input;
SaveFailed — the handler is executed in case of throwing an exception during operation for saving of
the document.
+Ithe following is delivered at handler input:
e Saving document;
e an exception, thrown during saving;
GenerateDescription —handler executed after document saving , but before event handlerAfterSave.
Using the handler you can generate document description (value of field Description), which is
generated by pattern by default {DocumentType}({DocumentSubtype}) #{ID} {TRANSACTION_DATE}.
+Ithe following is delivered at handler input:
e Saving document;
e Description value;
BeforeDelete —the handler is executed directly before deletion of document, after the user has clicked
deletion button. Using the handler, deletion process can be canceled having thrown an exception.
+Ithe ID of deleted document is delivered at handler input;
AfterDelete —the handler is executed after deletion of the dictionary record (the dictionary record does
not exist any more), including after execution of BeforeDelete handler, but before transaction
commitment. Using the handler, deletion can be canceled having thrown an exception.
+Ithe ID of deleted document is delivered at handler input;
DeleteFailed —the handleris executed in case of throwing an exception during operation for deletion
of the document.
+Ithe following is delivered at handler input:
e id —1ID of the document being delete;
e an exception, thrown during deletion.

In addition to the handler of events of document type (which may be even not created), there is the
common handler of dictionary events CommonDocumentEventHandler, which responds to the events,
which occur to the records of any document. It responds to the same events but is executed always

before the handler of events of document type

The handler of events CommonDocumentEventHandler can be found in the dictionary “Scripts” or

opened via the list form of the dictionary Document types:

Document types o =
Q| # | ©F Common event handler < Filters i
Identity System name Localized name |%Database table name Map object name
4020 Purchase Purchase D_PURCHASE VD_PURCHASE
6145 EmployeeCashPayment Employee cash payment D_EMPLOYEE_CASH_PAY... VD_EMPLOYEE_CASH_PAY...

The sequence of calls of document events handler is as follows:
1. Incase of saving:
e BeforeSave event handler CommonDocumentEventHandler;

© 2018 Ultimate

219

Developer

e Event handler BeforeSave of document;

e Transaction scripts;

Transaction validators;

saving of the head and data of table parts in DB;

saving of transactions in totals;

Event handler GenerateDescription of document;

handler of event AfterSave CommonDocumentEventHandler,
AfterSave event handler of the document;

ULTRAATE

SOLID

If any error occurs at any stage of saving, SaveFailed event handler (at first

CommonDocumentEventHandler, then the document).
2. In case of deletion:
e BeforeDelete event handler CommonDocumentEventHandler;
e BeforeDelete event handler CommonDocumentEventHandler;
e deletion of the document in DB;
e deletion of transactions from totals;
e AfterDelete event handler CommonDocumentEventHandler;
e AfterDelete event handler CommonDocumentEventHandler;

If any error occurs at any stage of deletion, DeleteFailed event handler will be called (at first

CommonDocumentEventHandler, then the document).
3. In case of creation:

e creation of the object of corresponding class;

e receipt of new ID;

e Receipt of stated subtype;

e processing of transferred parameters (parameters, which name coincide with the document fields,

are assigned to document fields automatically);
e BeforeCreate event handler CommonDocumentEventHandler;
e BeforeCreate event handler of the document
4. In case of document loading:
e loading of the document from DB and initiation of the object;
e AfterLoad event handler CommonDocumentEventHandler;
e AfterLoad event handler of the document.

Transaction scripts

The transaction scripts are the scripts forming the transactions over totals.

The transaction scripts are associated with document subtype and executed during saving of the

document of particular subtype.

© 2018 Ultimate

220

ULTRAATE

Developer SOLIn

The list of all transaction scripts can be found in the dictionary "Scripts". Besides, the transaction scripts
can be opened (as well as created, deleted or renamed) in the document type edit forms, corresponding
to its subtype:

E} Document types, 1909 = B

+[Document types: 1909 | 3 SQLseript & Class code & Event script |_‘—',3 QK Save Cancel

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

Document subtype Preview: transactions by subtypes
Order - | X Payment expectation
Set at a warehouse
Check transaction scripts Addanewsaipt |~ [5] Order
| creating the debt of the customer T
receipt of payment from the customer LT creating thegebt of the customer
| reservation of goods at a warehouse » Ready to delivery
transfer of goods to the customer Reserve
Deliverad
1
v

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)
g Sy=tem;
g System.Collections.Generic;
g Syztem.ComponentModel .. Composition;
ing System.Ling;
g Ultima;
g Ultima.Documents;
g Ultima.Metadata:
ing Ultima.Totals;

< b L b
5

namespace Ultima.Scripting.Documents.Transactions

internal partial clas= UntitledScript2229

protected override woid GetTransactions (CrderDocument document,
Tran=sactionPairCollection transactionPairs, TransactionCollection transactions)

I
R S N T

The transaction scripts are derived from DocumentTransactionScriptBase<T> class (T — document type),
which implements in turn IDocumentTransactionScript<T> interface.

+IThe following is transferred at script input:

e saved document;

e collection of the pair of transactions (for balance totals);
e collection of the transactions (for non-balance totals).

The transaction scripts are called with the kernel at each document saving (after successful execution of
the handler before document saving). Several transaction scripts forming the transaction over various
totals can be associated with each document subtype. Moreover, it should be remembered that the
sequence of their call cannot be predicted.

I+ As a result of successful execution, the transaction script returns an array of transactions, and the
kernel will call the handler after document saving.

The kernel executes the minimum required set of queries to bring into compliance the set of

transactions in the base and set of generated transaction scripts of transactions. As a result:

e if the base contains no transactions generated with transaction scripts, they will be added;

e if the base contains the transactions, which are missing in the set, generated with transaction scripts,
they will be deleted,;

e etc.

Correspondingly, if the transaction must be stored in the database throughout entire document life time
in case of change of its subtype, the transaction script generating this transaction must be linked to all
document subtypes.

© 2018 Ultimate 221

ULTRAATE

Developer SOLIn

document transaction date, even in case of no other changes, results into change of the whole
set of transactions. Generally, it does not result into locks during record of transaction in the
total, but increases considerably the time for transaction execution. It is recommended to
avoid excessive changes of document transaction date.

| ' I The transactions contain a date of document transaction. Correspondingly, change of the
| |

' The transaction scripts are designed to form an array of transaction over totals based on the
l document. Performance of any other manipulations with the documents is extremely
undesirable using them. The event handlers are designed for that.

Peculiarities of recording transactions

The totals can be balance and non-balance.

In case of changes made to the balance totals, a double-entry rule is always applied when each
transaction has paired transaction (opposite in sign) and their amount is always zero.

The transaction for a transaction by the total and is called full if the values (not equal to null) are
indicated for all its dimensions and variables (see details in the section Transaction scripts).

Posting is a pair of transactions for balance totals. Sometimes the term posting is applied for several
pairs of transactions. For non-balance totals, the posting and transaction are synonyms.

Operational total — a total, which all dimensions and variables are set at the moment of document
transaction (see details in the section Totals). All non-balance totals are operational. All balance totals
are non-operational —analytical.

Turnover total —a total, in which the amount balances are accumulated, and the number is always zero.
The examples of such totals can be Sale and Convertation.

The total, which stores information about quantitative indicators of monetary units in particular
currency, is called monetary. Moreover, it must have:

e dimension (operational) Currency —currency;

e variable (operational) CurrencyAmount —amount in currency;

e variable (analytical) Amount —amount in reference currency (ruble for Russia), prime cost.

Money non-negotiable total, at which CurrencyAmount may gain negative values, is called cashless. All
other money non-negotiable totals — cash . For calculation of their analytical variables, corresponding
drivers of the totals are used: CashlessMoneyTotalDriver for cashless totals and MoneyTotalDriver for
cash.

Money negotiable total — Convertation.

All transactions for money totals are made through intermediate total of Convertation. In the basic
configuration, checking of this rule is carried out using scripts-transaction validators on money totals
(see details in the section Transaction validators). In own configuration, the application developer is
responsible for observance of this rule.

The money totals differ from common ones with the ability to get into arrears. From business logic
perspective, it means overdraft or debt. Getting into arrears is usually possibly only for the totals, which
store information about cashless money, such as bank accounts. Though in practice, it is recommended
to use convertation while handling all money totals, even if cash money is taken into consideration - just
not to think once again if to use convertation or not.

The ability to go into arrears means that the total can calculate the prime cost not only for outcome but
forincome transactions (only if uncleared overdraft is present on money total). It is made so that during

© 2018 Ultimate 222

ULTRAATE

Developer SOLIn

clearing off of overdraft to zero, the prime cost of zero balance on the total appears to be zero too. If

doing direct transactions to such total from operational totals, by passing convertation, violation of the

double-entry rule can be produced after calculation of full transactions of totals by calculator. It occurs
as follows:

e for instance, if there is direct transaction from the contractors' debt to the balances of settlement
accounts. If the settlement account is in arrears, it will calculate the prime cost of arrived currency.
However, another prime cost will be indicated in the pair transaction since all variables are
operational in total of the contractors' debt and shall not be recalculated. As a result not the right
amount, which will be entered on the account, will be written off. Calculation of totals will register a
critical error;

e similar situation occurs when direct transaction is made from one account to another. If the receiving
account is in the overdraft, both totals will calculate a prime cost of money, each in own manner. As a
result, violation of the double-entry rule will occur and, as a result, a critical error of calculation of
totals.

The specified problem is solved with the use of intermediate convertation total. Instead of direct
transaction debt -> account we make a pair of transactions: debt -> convertation, convertation -> account.
In the first transaction, the amounts are indicated (since the total of debts is operational, the amount
cannot be indicated), in the second transaction they are not indicated. The second transaction will be
calculated with the totals' calculator. Moreover, the currency prime cost will determine the receiving
total if in arrears or otherwise convertation total. As a result, all discrepancies in the amounts will
remain on the convertation total, and the double-entry rule will not be violated with either of the
transactions.

Therefore, the convertation total acts as buffer, on which all income and losses will fall, being a result of
currency exchange transactions.

In order to prevent gross errors in the transactions by money totals, scripts validating transactions are
present in the basic configuration. The validators cancel transaction of the document if the money
transactions do not pass the convertation total. If during improvement of the configuration by the
application developer a new money total was added, it should be taken care to write similar validating
script for this total.

Handlers of total events

The total events handler is a script executed automatically in case of a number of events occurring to the
total. Own events handler can be created for each total. To create the handler it is necessary to click
Event script button in the total edit form. During creation of new total, the events handler is not created
by default.

The list of all handlers of totals events can be found in the dictionary "Scripts". Besides, the handler of
events of particular total can be opened from its edit form:

=)

Exception translators

Exception translators are simple services with the Translate method which accept exception and return
translating result. If it is impossible to return the translating result, they return null. User translators are
executed after system translators, but before exception translators. For example, a translator which by
constraint name reports object name and property belongs to system translators: it is impossible to
delete record as a dictionary, a field refer to it (if the objectisn't described in meta data, in the message
there will be a name of the table and a column).

© 2018 Ultimate 223

ULTRAATE

Developer SOLIn

From exception translators translators are distinguished by use of scripts that gives more flexible
approach to exception handling, but does them a little more difficult in application.

The list of all user exception translators can be found in the Exception translators dictionary:

;? Exception translators = = 22
e 7 & 2 e # o a -
Name Sort index Description
{Exception translators Il 1 Dummy translator

The dictionary records can be filtered by Translator name (Description) and Tags (Tag).

The translator exception has the following properties:

LP Exception translators, 48699 o =R

«f Exception translators: 48699 |[] nofiles + en g £ OK Save Cancel

Exception translator

Caption Dummy translator

Script Click here to edit the script...

Folder Exception translators -
Sort index 12
Metadata tags

Developer's comments
Dummy exception translator used in integration tests.

e Caption —translator name;

e Script — a link to translator script. In case of creation of new translator, the script is created
automatically upon its saving. Click on the link Click here to edit the script... during creation of new
translator will result its saving and reloading, after that the script edit form will open;

e Folder—agroup, the translator belongs to;

e Sortindex —a sorting index which defines execution order of translators. Translator with the smallest
index value is executed at first and further according to index value increase before the first
successful execution (if itis executed successfully in the translator, reverse itisn’t specified);

e Metadata tags —tags used to describe report translator;

e Developer's comments —comments of application developer.

Example of translator:

namespace Ultima.Scripting.Exceptions

{
public Exception Translate(Exception ex)
{
//Condition check
if (ex.WithInnerExceptions().Any(x => x.Message == "Untranslated"))
{

//check of serializability of original exception
if (lex.IsSafelySerializable())

ex = ex.ToSerializable();

}

//resetting of translating exception
return new UltimaException("Translated", ex);

© 2018 Ultimate 224

ULTRAATE

Developer SOLIn

}

//the exception doesn’t meet the checked conditions
return null;

}

public bool StopOnSuccess

{
//not to execute the following translator if this worked successfully
get { return true; }

}

Analytic columns providers

In dictionaries, documents and table parts of document it is often required to display additional
information that is not stored directly in their tables. For example, columns with the translations of the
names into supported by the system languages can be added to metadata dictionaries. In the currency
dictionary it is convenient to bring the column of the current exchange rate of each currency against
ruble, and by double-click on this column to open the table with other available courses. In article table
part, you can show your current balance for each article in stock, and so on.

The columns, in which this additional information is shown, are called analytic columns. Uploading
information into these columns is performed by a particular type of handlers, called analytic columns
providers. You can add analytical columns into dictionaries and documents registers with the help of
analytic columns selection, in table parts of document, these columns are always displayed if
AutoPopulateGridColumns flag is set to true.

Analytic columns provider perform the following tasks:

e Provides a list of supported columns in a SlimColumn collection (for the selection of columns);

e Loads data for the selected columns and returns them as SlimTable table;

e Processes double-click on the analytical column in the line of the list and returns client actions list.

Most often, the provider takes data from other applicatiin tables, but its possibilities are not limited to
this. To download the data it can connect to a different database or, let’s say, refer to the Web service.
Processing of double-click on the analytical column makes it easy to implement functionality of type
“view details” (drill down): for example, by double-click on a column of article stock in central store a
table of stock in any other stores is loaded.

Provider distinguishes the columns by their names (Name). Columns names must be unique to each
provider (the system is able to distinguish between columns of the same name, received from different
providers). The displayed name of columns should be localized, for that, as usual, scripting resources are
used.

Analytic columns provider has the following features:

© 2018 Ultimate 225

ULTRAATE

Developer SOLIn

II'% Analytic column providers, 55541 = =R
«[Analytic column providers: 55541 en [£ 0K Save Cancel

Analytic column provider Available columns
MName AgentExchangesAnalyticColumnPro MName Caption Data Type Visible
Script Click here to edit the script... b | Test Test# System. String v
Folder Analytic column providers - Test2 Test2= System. String W
Referenced object 6374 |~ |---|| AgentExchan... £
Metadata tags

Developer's comments

Name —provider class name.

Script —a link to provider script. The new provider of columns script is created automatically when you
save. Click on the link Click here to edit the script... during creation of new provider will result into
saving of the provider and its reloading, after that the script edit form will open;

Folder —a group, the provider belongs to;

Referenced object — metadata object for which the provider loads the additional column;

e Metadata tags —tags used to describe provider functionality;

e Developer's comments —comments of application developer.

The right side of the edit form displays a list of of columns, given by the provider (if the script is saved
and compiled with no errors). Displayed names of of columns in the list are displayed in the language of
the current user.

In metadata objects associated providers of columns are displayed in a separate tab. Here, the left side
shows a list of all the providers linked to the project, and the right the list of of columns of selected
provider (or all providers, if no provider is selected on the left):

-_p AgentExchangeTablePartRow, 6374 o B ER

[Table part types: 6374 [& | 3 S0OLscript %F Class code K Save Cancel

Main | Properties | Analytic column providers

@ F & o = = - Analytic columns
Iden... | Name RefObject... | RefObject.ObjectTy... Prov... | Name Caption |DataT... | Visible
3 55537 AnalyticColumnProvider55537 AgentExch... TablePartType b | 55537 Sample Sample# Syste... o
55541 AgentExchangesAnalyticColum... AgentExch... TablePartType 55541 Test Test# Syste... o
55541 Test2 Test2# Syste... o

© 2018 Ultimate 226

ULTRAATE

Developer SOLIn

The provider of analytical of columns is obliged implement three methods:

e GetAvailableColumns — returns columns for selection (SlimColumn list);

e GetColumnsValues — loads the data of columns for the list of records (SlimTable);

e ExecuteAction — processes mouse double-click on a column and returns the result (ClientAction list).

Example of script provider of analytical columns:

internal partial class SampleColumnProvider

{
public IList<SlimColumn> GetAvailableColumns(Type type)
{
// return the list of available columns
var columns = new List<SlimColumn>
{
new SlimColumn
{
Name = "Sample",
Caption = "Sample#", // use resources to localize captions
DataType = typeof(string)
}
¥
return columns;
}

public SlimTable GetColumnsValues(Type type, List<SlimColumn> columns, IDList records)
{

var result = new SlimTable();

result.Columns.Add("ID", typeof(long));

foreach (var col in columns)

{
result.Columns.Add(col);
}
foreach (var id in records)
{
var row = result.NewRow();
row["ID"] = id;
foreach (var col in columns)
if (col.Name == "Sample")
{
row[col.Name] = "Sample#" + id % 100;
}
}
result.Add(row);
}

return result;

}

public void ExecuteAction(Type objectType, long id, SlimColumn column, object value,
IList<ClientAction> clientActions)

{
}

clientActions.AddMessageBoxAction(new { id, value }.ToString(), column.Caption);

© 2018 Ultimate 227

ULTRAATE

Developer SOLIn

)

Il L-II

% Tasks are scripts performed on an application server according to schedule. A list of all tasks can be
found in the "Tasks" dictionary:

® Tasks

e F & & e 3 & Q - |Q - -

Tasks Scriptidentity |Is active |Execute a single instance |Minutes |Hours |Days |Week day |Months | Years | Seconds

; 1673 + + + + + + 0
3 Loglistener 1604 & Edit 0/3 10 * 0
1645 PrintQueueWWatcher 1646 v & Delete = = = 20

1607 TotalsCounter 1603 v = * = 0
y Start now
» 1511 UsersMotifier 1512 W * = * 0f20
&P Edit script

The dictionary window is divided into two parts: on the left, there is a tree of task groups; on the right - a
list of tasks selected to the left.

In addition to filters by Name of task (Name) and Tags (Tag), the dictionary has the filter When did task
work?, which is activated by the flag to the right of the filter and allows finding all tasks performed at
the specified time.

The dictionary list form allows to:

e run a task immediately without waiting for the scheduled start; to do this, select the Start now item of
the context menu;

e open the script of the selected task in the edit form; to do this, select the Edit script item of the
context menu.

The filter When the did the task work? is usable if a task has changed particular data, and it is needed to
find out, which task was used in doing it. All tasks are always performed on behalf of the user Task. If the
history shows that the data were changed by the user Task, to find tasks, which were working in that
time, it is sufficient to make use of this filter by having specified the date of alteration.

Button # Start Now located in the toolbar of the task edit form allows to perform the task immediately
without waiting for the scheduled start:

(& Tasks, 5282 = B &

< Tasks: 5282 @ nofiles ~ en ¥ Start now 0K Save Cancel
Common Application servers

MName Print queue watcher Q) f | Enabled ¢ | Disabled --;--AII @

Seript Click here to edit the scipt...

Server Name
Folder Tasks - b | v Cluster Name: alexey.petrov
is active execute single 127.0.0.1:8192
years months days week day v Cluster Hame: Production platform

¥|{127.0.0.1:8192

hours minutes seconds w Cluster Name: rup

= = 20 127.0.0.1:8192

Metadata tags v Cluster Name: yallie's cluster
localhost: 3080

Dev. comments 127.0.0.1:8192

© 2018 Ultimate 228

ULTRAATE

Developer SOLIn

The task has the following properties:

e Name —name of task;

e Script — link to script. When creating a new task, the script is created automatically when saving the
task.

The task scripts implement the ITaskScript interface.
+IThe initial time of performing the task is transferred to the script input;

e Folder—a group that the task belongs to;

e js active —the flag indicating active tasks. If the check box is disabled, the task will not run according to
schedule;

e execute single —the flag indicating the necessity to perform a single task instance. If itis time to start a
second task instance, but it appears that the first instance is still not completed, the second instance
will not be started;

e years, month, days, week days, hours, minutes, seconds — schedule for performing a task. Schedule
fields can have the following values:

*_—anyvalue. E. g., if the task is to be run on a daily basis, enter * to the days field:

years months days week days

N —positive integer. E. g., if the task is to be run on i:ridays, enter 5to the week days field:

YEars months days week days

= = = -5

N1, N2, N3... —alist of positive integers'. E.g., if theltask is to be run only in the summer, enter 6, 7, 8
to the month field:

Years months days week days

= 0,78 = -*
/N — fractional value of a positive integer. The task will be performed for all possible values of
date/time, if the residue of division of this values by N is zero. E. g., for the field month, the value /2
will relate to the even days of the month: 2, 4, 6...; for the field minutes, the value /15 will relate to O,
15, 30 and 45 minutes. The task that have both these values will be performed on the even days of the
month every 15 minutes:

Years months days week days
= = J{Z -
hours minutes seconds

= T s i
N1/N2 — fractional value of positive integers. The task will be performed for all possible values of
date/time, if the residue of division of this values by N2 is N1. E. g., for the field month, the value 3/10
will relate to 3rd, 13th and 23rd days of the month:

years months days week days
* 3/13 * -*

l Let's consider an example. We need the script to be executed on the application server in
the year 2013 from Monday to Friday from 01:00 AM to 02:00 AM, and from the 1st to the 2nd
days every 10 minutes. Then the task schedule will be as follows:

years maonths days week days
2013 * = -11,2345
hours minutes seconds

112 o - |0

e Metadata Tags —tags used to describe the task functionality;

e Dev. comments —comments by application programmer;

e Application servers —list of application servers for performing the task. Servers are grouped in clusters
that they belong to. Among all servers available, one must select those that the task is being planned
to be performed on (if no servers selected, the task will not be performed).

The list can be filtered by Cluster name according to the text entered to the "Cluster name" field. The
list can be additionally filtered by servers using the flags:

= EFnable —by all servers checked;

= Disable — by all servers unchecked;

© 2018 Ultimate 229

ULTRAATE

Developer SOLIn

= All-by all servers regardless of the check boxes.
To clear the filter contents and display the full list of servers, click the button .

ﬁ To perform scheduled tasks in the ConsoleServer.exe.config configuration file of at least one
application server of a cluster, enable the task planner:
<setting name="TaskSchedulerActive" serializeAs="String">

<value>True</value>
</setting>

Totals and reports

Total drivers

=]
EEE Calculation of totals is performed by the total calculator in connection with totals drivers. Drivers
are responsible for calculating transactions of their respective totals; the entire process is controlled by
the calculator. The calculator determines a calculation interval and creates one driver instance per total
in the system (the calculation involves only double-entry totals). Before the calculation is launched,
each driver loads its own state at the beginning of the period. What state is—depends on a particular

driver (e. g., for FIFO driver—the state is a list of the available batches).

In the process of calculation, the total calculator simultaneously loads the transactions of all totals,
groups them in pairs and forms packages according to documents. The documents are processed
sequentially in the order determined by the posting date. The loaded transactions are transferred to
total drivers for handling; in the process, the transactions of operational totals are simply copied (since
no calculation needed in this case), while the transactions of analytical totals are initially processed by
the methods Calculatelncomes/CalculateOutcomes of their own drivers.

With a certain periodicity, the total calculator stores the calculated transactions in the table of round
transactions and refreshes the values of the total limits calculated. In case of emergency stop of the
calculation process, a restart will proceed with the calculation from the point, where the last calculation
limits were set.

Each driver implements its own algorithm of management of the state total, and imposes certain
requirements for the original transaction documents. If the document does not satisfy the total
transaction driver requirements, results of the calculation error occurs. Errors of calculation are
noncritical (not leading to divergences of the sums after calculation of results), critical (lead to
divergences of the sums and the admission of wrong transactions) and fatal (causing a stop of calculation
of results). Errors of the first two types are saved in a special log of errors of calculating of totals along
with the numbers of documents that caused these errors. After calculating the totals, itis recommended
to process the log and correct errors in documents, while re-calculating the totals will not pass without
errors.

To maximize early detection of errors validation of transactions which happens at the time of saving
documents is provided. It is far easier to eliminate any mistake in the document if its context isn’t lost
yet while author of the document remembers what was going on and can update the information.
Validation during document posting is done with a special type of script —validators of transactions.
These scripts check local rules for specific results (an example of such rules: in the end, the Conversion
amount cannot be zero). Besides, drivers of results are engaged in validation of conductings They check
the rules relevant to the outcome groups (an example of such universal rules: the transaction amount
may not have fractional cents). During document posting validators of drivers outcome are applied in
the first place, and then validator-scripts of all outcomes, which makes the document postings.

© 2018 Ultimate 230

ULTRAATE

Developer SOLIn

Any driver can be assigned to several totals simultaneously. The goal of an application programmer is to
choose for the total one of the standard configuration drivers or implement his own on the basis of base
classes. In operational totals, which data do not require calculation, the Default driver is used (1D 7471).

The list of all total drivers can be found in the "Total drivers" dictionary:

sie Total drivers o B OR

2 s P Q - Q| & E|El |~

Total driver identity MName Description

HI 7471 Default Default total driver
7473 Stock Driver for the Stock total
7481 Sale Driver for the Sales total

The dictionary window is divided into two parts: to the left, total drivers groups in a tree-like structure
are displayed; to the right, a list of drivers from the group selected on the left.

Dictionary records can be filtered by Name and Tags.

To open a script of a selected total driver in the edit form, select the item Edit script in the context menu
of the dictionary list form.

A total driver has the following properties:

12 Total drivers, 7478 o B R
«[Total drivers: 7478] nofiles - en OK Save Cancel
Name Stock
Description Driver for the Stock total
Base dass FifoTotalDriver -
Script Click here to edit the script...
Folder Total drivers -

Metadats tags

Developer's comments

e Name — name of driver;
e Description — description of driver;
e Base class— base class of driver. A base class is selected according to the specific character of the
total, which analytical data are calculated by the driver. There are the following base classes:
= DefaultTotalDriver— used by default for totals, which data do not require calculation;
= FifoTotalDriver — implements the calculation of cost under the FIFO method (first-in, first-out).
Accordingly, this is used for those total drivers that treat the cost as an analytical variable;

= MoneyTotalDriver — a variant of the FifoTotalDriver class, which variable Quantity is replaced with
the variable CurrencyAmount. This is used for those total drivers that treat money as an analytical
variable;

= CashlessMoneyTotalDriver — a variant of MoneyTotalDriver, that may be in the red. This is used for
those total drivers that treat cashless funds as an analytical variable;

» MarginTotalDriver — a base class for the drivers of totals of sale (of goods and services) and
conversion (of currencies);

= CurrencyExchangeTotalDriver— a base class for the currency exchange driver.

e Script — link to the script. When creating a new total driver, the script is created automatically after
the driver has been saved. Click the link Click here to edit the script... while creating a new total driver
will save the driver and reload it; after that, a script edit form will open;

e Folder — a group that the driver belongs to;

e Metadata tags — tags used to describe the driver functionality;

e Developer's comments — comments by the application programmer.

© 2018 Ultimate 231

ULTRAATE

Developer SOLIn

ZF Scripts of total drivers are inherited from the base class specified in the property Base class. All base
classes of totals drivers realize the [TotalDriver interface (from the namespace
Ultima.Totals.Calculation).

The interface ITotalDriver contains the following methods and properties:

e TotallD of the type long — returns the total id;

e LimitDateTime of the type DateTime — returns the date on which the current total is calculated,;

e LimitDocumentID of the type LimitDocumentID — returns the document id on which the current total is
calculated;

e DocumentBalance of the type decimal — returns the balance value of the current document (the sum
of all values of the variable Sum of its transactions);

e BeginCalculation(ITotalCalculator transactionProcessor) — is caused at the beginning of process of
transactions calculation;
® transactionProcessor — a copy of the transaction handler that is used to calculate the error

messages, etc.;

e EndCalculation() — is caused at the end of process of the transactions calculation;

e BeginDocument(DateTime transactionDate, long docld) — is caused at the beginning of calculation of
each document;
= transactionDate — transaction date;
= docld — document id;

e EndDocument(DateTime transactionDate, long docld) — is caused at the end of calculation of each
document;
® transactionDate — transaction date;
® docld — document id;

e BeginTransaction() — is caused in the beginning of calculation of each transaction;

e EndTransaction() — is caused in the end of calculation of each transaction;

e loadTotalState(ITransactionLoader loader, DateTime limitDate, long limitDocld) — loads the total
status for the specified date (or transaction date of the specified document:
= Joader — transaction loader;
» [imitDate — transaction date, to which a total status will be loaded;
® [imitDocld — the document id, for which transaction date a total status will be loaded;

e AddCompleteTransaction(DetailedTransactionValue transaction) — adds transaction to the list of full
total transactions:
= transaction — transaction for adding;

e CanCalculateOutcome(TransactionValue outcome) — reports whether the current driver can
independently calculate the specified account transaction to full one:
= outcome — outcome transaction;

e CalculateOutcomes(TransactionValue outcome, |IEnumerable<TransactionValue> incomes) — counts
account transactions to full ones:
= outcome — outcome transaction for counting;
= jncomes — counted income transaction;

e Calculatelncomes(TransactionValue income, |Enumerable<TransactionValue> outcomes) — counts
account income transactions to full ones:
= jncome — income transaction for counting;
= outcomes — counted outcome transaction;

e DetailedTransactions tuna ICollection<DetailedTransactionValue> — returns the calculated detailed
transaction which is ready to be recorded into the database. In applied drivers of the totals this
collection is available only for reading.

© 2018 Ultimate 232

ULTRAATE

Developer SOLIn

The DefaultTotalDriver driver serves as a base class for all other classes of drivers of totals. It realizes the
ITotalDriver interface and provides a number of virtual methods which are redefined in descendant-
classes.

The basic driver does not keep a state and does not provide any algorithm of calculation for analytical
variables and dimensions, so by itself it is usually used only for operational and unbalanced totals,
where there is nothing to count.

Though the driver does not count analytical data independently, it nevertheless is able to transfer the
information between the pair transactions, which are filled asymmetrically. For example, if in the
processed couple of transactions if there is a dimension IncomeDocumentlD, which is filled only in one
of two transactions, the driver will automatically copy this value into the second transaction. When
copying variables in pair transaction the driver automatically changes the sign.

Other useful property of the basic driver is an ability to stratify transactions symmetrical. If when
processing of pair of transactions in one of totals the stratification took place, and in another there was
one transaction, the basic driver will break this transaction into the same quantity of fragments, will
symmetrically break values of variables and will check their total amount remains the same.

ZEF The following properties and methods of the base class DefaultTotalDriver can be redefined

(selectively) in a scrip:

LoadTotalState — to load total state for the specified date;

Calculatelncomes — to calculate income transactions to full ones;

CalculateOutcomes — to calculate outcome transactions to full ones;

CanCalculateOutcome — to report whether the driver can independently calculate the specified

account transaction to full one;

e BeginDocument/EndDocument — is caused in the beginning/end of calculation of each document;

e BeginTransaction/EndTransaction — is caused in the beginning/end of calculation of each transaction;

e CheckVariableValues — the flag defines whether control of variables total amount is needed after
stratification of transactions.

The collection DetailedTransactions is not available in the basic driver. If the driver needs to see own

calculated postings which is not saved in the database yet, it can use the method

FindDetailedTransactions.

FifoTotalDriver — a base class of the driver for the total, organized as FIFO. It keeps the state, introduces
another party number (LotNo) in addition to dimensions of the total. It can count prime cost of parties
according to FIFO algorithm. At an entry of the party of registration data the driver of a total fixes its
prime cost and uses it at the moment of write-off, at the same time the parties are written off in the
same order in what they have been credited. At write-off of quantity in minus (an expense of party,
which has not been earlier credited) gives an error message of write-off and zero prime cost.

MoneyTotalDriver — a kind of the FIFO driver focused on the accounting of cash. For the accounting of
guantity instead of the Quantity variable CurrencyAmount is used, there are no other differences from
the basicdriver.

CashlessMoneyTotalDriver — a kind of the FIFO-driver for the accounting of non-cash money. For non-
cash money there is an operation of an overdraft (account balance comes to minus), which this driver
does not consider as a write-off error. Instead of it the operation forms negative party with its own
prime cost. At repayment of an overdraft the driver always uses prime cost of this party, in order to the
zero balance in accuracy has coincided with zero balance on the amount in the account currency by
quantity (currency amount). For coordination of amounts in conductings at the same time the auxiliary
driver of Conversion, based on MarginTotalDriver is always used

© 2018 Ultimate 233

ULTRAATE

Developer SOLIn

ZF The following methods of the base class FifoTotalDriver can be redefined:
e CalculatePartialAmount — to calculate the amount for a partial expense of party (here it is possible to
set, rules of rounding, for example).

5 The following methods of the base class CashlessMoneyDriver can be redefined:
e CalculateTransactionAmount — to calculate the unknown amount of transaction (for example, at a
current rate of the Central Bank).

For calculation of sales of goods and currencies, the totals Sale and Conversion are used, which drivers
are based (usually, without any changes in logic) on the driver MarginTotalDriver. This driver always
handles two pairs of transactions: receipt and expenditure. The pairs always have a common quantity
variable, but, as a rule, their amounts differ.

The Sale total acts as follows: receipt of an article at cost followed by sale of the article at selling price.
The difference between the expenditure and the receipt is proceedings from the sale of the article. This
is how sale transactions look like:

Total: Stock Total: Sale Total: Agents balances

1. Receipts (no amounts— Quantity, Noamount +Quantity, No amount
specified)

2. Expenditure (together - Quantity, - Amount +Amount
with the amounts)

For the receipt pair of transactions, the Stock total driver (working on the base of FifoTotalDriver)
calculates the receipts, that is the cost, following the FIFO algorithm. The Sale driver copies this amount
into the pair transactions. In the expenditure pair of transactions, the amount is already specified: this is
the selling price of the article. The expenditure transactions write off the article from Sale and record
the debt to Agent balance; the Sale will contain the difference between the receipts and expenditure.

The Conversion total is used for harmonization of amounts when transferring the money between
accounts and buying/selling foreign currencies. The total handles two pairs of transaction at once; the
result is similar: the difference between receipts and expenditure accumulates in the total. Below is a
scheme for Conversion transactions to transfer the money between accounts:

Total: Bank accounts Total: Conversion Total: Bank accounts

1. Receipt (together with- Quantity, - Amount + Quantity, + Amount
the amounts)

2. Expenditure (no —Quantity, Noamount +Quantity, No amount
amounts specified)

The receipt transaction shows the amount (a money equivalent of the amount in the given currency);
the expenditure transaction shows no amounts. The driver of the source account either provides the
cost of the currency batch or uses a money equivalent (if a debit of the account into the red occurs, and a
new negative batch having its own cost is created). In the second pair of transactions, the cost can be
provided either by the recipient account (if it is needed to close the negative batch under this account)
or uses the same cost that appears in the receipt pair of transactions. Most commonly, when both bank
accounts have a positive balance, the transfer of the money between the accounts does not affect the
cost of the currency: the cost is transferred via the Conversion total without any changes. But if there is
an overdraft on either side, the Conversion total acts as a buffer that harmonizes costs of batches.

Another scheme for Conversion transactions can be used when buying/selling currency from the agent's
balance:

© 2018 Ultimate 234

ULTRAATE

Developer SOLIn

Total: Bank accounts Total: Conversion Total: Agents balances

1. Receipt (together with- Quantity, -Amount1 +Quantity, + Amount 1
the amounts)

2. Expenditure (together - Quantity, —~-Amount2 +Amount 2
with the amounts)

Amounts shown in the receipt pair of transactions, as in the previous case, are used only if the account is
in the red. If the balance of the source account is positive, the driver of the source account will replace
the Amount 1 with the real cost of the money batch. As in the previous case, the Conversion total will
accumulate the difference between the expenditure and the receipt, which can be considered as
proceeds (or losses) from currency exchange.

This driver is used only for operations of currency exchange with preservation of prime cost of the
currency. Itis similar to the simplified driver MarginTotalDriver: it also works with two pairs of postings
at a time, but it does not require write-off of quantity to zero and completely ignores unmatched
dimension. It allows crediting dollars on a total, and to write off euro from it. In a simple case the
postings scheme on a total Currency exchange looks like this:

Total: Bank account (§) Total: Currency exchange Total: Bank account (€)

1. Income (with sums) - Quantity$, - Sum + Quantity$, + Sum
2. Expense (without - Quantity€, Without sum + Quantity€, Without sum
sums)

Here the QuantityS — quantity of dollars, Quantity€ — respectively, euro (numbers, of course, do not
coincide). In the first posting the sum is specified (prime cost in account currency) which is necessary
only when the account-source become negative. Under normal circumstances, if the balance of the
account-source is positive driver of the Bank account reports the prime cost of this currency party. If the
money which is written off from the account-source belongs to several different parties with different
cost — the posting is stratified, and similar to it the receipt posting is stratified on a total Currency
exchange. If the posting on the receiving account is stratified, then the pair posting to it Currency
exchange is also stratified in the same way.

On the receiving account there can be a negative balance as well, because of what the prime cost of the
currency in the second pair of postings partially or will be completely taken from the receiving account
(to close negative party in zero). In this case the total Currency exchange in the second pair of postings
uses this prime cost, and the difference will settle on a total Currency exchange.

Most often it is more convenient to consider this difference on the Conversion total — in the same place
where profits and losses from all other operations with currency. It is easy to achieve it if the second
pair of postings will be to driven through the Conversion:

Total: Bank accountTotal: CurrencyTotal: Conversion Total: Bank account
(%) exchange (€)

1. Income (with-Quantity$, -Sum +QuantityS, + Sum

sums)

2. Expense (without - Quantity€, Without+ Quantity€, Without

sums) sum sum

3. Conversion - Quantity€, Without+ Quantity€, Without

(without sums) sum sum

© 2018 Ultimate 235

ULTRAATE

Developer SOLIn

The difference of prime cost of parties of the currencies will settle on Conversion, the delta will remain
zero on a total Currency exchange.

Consider an example situation, when it is needed to sell from a store a production of a particular
product consisting of details; the stock is calculated in the Stock total. To do this, you will need to create
in the system an intermediate total called Production; the details will be written off from the Stock to
this total; the product assembled from the details will be recorded to the Stock from this total as well:

e Stock->Production // a detail;

e Stock -> Production // one more detail;

e Stock -> Production // one more detail;

e Production-> Stock // assembled product;

Itis needed to code a total driver that will calculate the cost of the product assembled from the details.
DefaultTotalDriver will be a base class, from which the total driver will be inherited.

| ' I Itis necessary to avoid database accesses in the total driver.
| |

When coding the driver, it is needed to work out the following problems:

1. Transactions must be done by the document that allows determining which details were used for the
production. To avoid accessing the database, a queue is formed: Making an empty queue for a
queued document can be done by redefining the virtual methods of the driver
BeginDocument/EndDocument.

2. Further, calculate the details that came from the store by using the method CalculateOutcomes:

public override ICollection<DetailedTransactionValue> CalculateOutcomes(
TransactionValue outcome, IEnumerable<TransactionValue> incomes)

Method's input parameters:
e outcome — write-off transaction. This must be calculated as round and, if necessary, split into
several transactions;

e jncomes —receipt transaction. Probably, already split by the pair driver and calculated as round.
Since the production doesn't possess any split logic, the split must be done by the basic driver upon
the model of pair transactions. But first we must calculate the cost. If to call the Default basic driver
method right away, the method will fail to obtain Amount, and an exception will be shown:
outcome.Amount = CalculateAmount(); // calculate the cost
return base.CalculateOutcomes(outcome, incomes); // perform split

3. Finally, as done above, we need to calculate the cost of the assembled product via the
Calculatelncomes method:

public override ICollection<DetailedTransactionValue> CalculateIncomes(TransactionValue
income, IEnumerable<TransactionValue> outcomes)

As aresult, we obtain the driver:
decimal docIncomeAmount = 0;

public override void BeginDocument(DateTime transactionDate, long docId)

{

docIncomeAmount = 0;
base.BeginDocument(transactionDate, docId);

}

public override ICollection<DetailedTransactionValue> CalculateOutcomes(
TransactionValue outcome, IEnumerable<TransactionValue> incomes)

{

var result = base.CalculateOutcomes(outcome, incomes);

© 2018 Ultimate 236

ULTRAATE

Developer SOLIn

var stock = outcome as StockTransaction;

if (stock != null && stock.Quantity < @ & incomes.Count() > @ &&
(incomes.First() is ProductionTransaction))
{

}

docIncomeAmount -= result.Sum(x => (x as StockDetailedTransaction).Amount ?? 0);

return result;

}

public override ICollection<DetailedTransactionValue> CalculateIncomes(
TransactionValue income, IEnumerable<TransactionValue> outcomes)

{
var result = base.CalculateIncomes(income, outcomes);
if (result.Count > 1)
{
AddError(result.First(), @"Single income Prod->Stock expected: {0}...{1}",
result.First(), result.Last());
}
var stock = income as StockTransaction;
if (stock != null & stock.Quantity > © && outcomes.Count() > 0 &&
(outcomes.First() is ProductionDetailedTransaction))
{
(result.First() as StockDetailedTransaction).Amount = docIncomeAmount;
}
return result;
}

Transaction validator for the driver (for a single product in a document):

public void ValidateTransactions(TransactionPairCollection transactionPairs,
TransactionCollection transactions)
{

long ProductID = -1;
foreach (var pair in transactionPairs)

{
var outcome = pair.OutcomeValue as StockTransaction;
if (outcome != null)
{
if (loutcome.IsValueNull("Amount"))
{
throw new UltimaException(@"Amount variable of an outcome stock
transaction mustn't be set.");
}
}
var income = pair.IncomeValue as StockTransaction;
if (income != null && pair.OutcomeValue.IsComplete)
{
if (!income.IsComplete)
{
throw new UltimaException(@"Income stock transaction must be
complete when outcome transaction is complete.");
}

© 2018 Ultimate 237

ULTRAATE

Developer SOLIn

if(pair.OutcomeValue is ProductionTransaction)

if(ProductID == -1)
{
ProductID = (pair.OutcomeValue as ProductionTransaction).ProductID;
}
if((pair.OutcomeValue as ProductionTransaction).ProductID != ProductID)
{
throw new UltimaException(@"In document must be only one product");
}
}
if(pair.IncomeValue is ProductionTransaction)
if(ProductID == -1)
{
ProductID = (pair.IncomeValue as ProductionTransaction).ProductID;
}
if((pair.IncomeValue as ProductionTransaction).ProductID != ProductID)
throw new UltimaException(@"In document must be only one product");
}

Transaction validators

Transactions validators — the scripts used to check the transactions for validity (correctness). Validators
are closely connected with the used totals drivers. The list of all validators can be found in the dictionary
“Scripts”. Besides, the validator of a particular total can be opened from its edit form:

[l Totals, 4242 = B &

[9 SOl script 'EF Class code &7 Event script | % Validation script B oK Save Cancel

Validator script is carried out when saving the document after transaction scripts and allows checking
correctness of transactions before their saving, giving an exception in case of an error. This, in turn,
allows reducing errors quantity when calculating of the detailed transactions by the total driver.

For example, by means of validators it is possible to check the following restrictions, imposed on total

transaction by the used drivers:

e itis forbidden to do the full account movement on the total, on which the driver FifoTotalDriver is
used;

e it is forbidden to do an incomplete income movement or to do the movement bypassing the total
conversion on a total, in which the CashlessMoneyTotalDriver driver works.

L} Total validation scripts realize the ITransactionValidator (from the namespace Ultima.Totals), which
contains the only one method:
e ValidateTransactions(TransactionPairCollection transactionPairs, TransactionCollection transactions) —
carries out check of transactions, it can be redefined by the applied developer:
® transactionPairs — collection of pairs of transactions for checking;
® transactions — collection of transactions for checking.

© 2018 Ultimate 238

ULTRAATE

Developer SOLIn

=

Totals drivers also realize the ITransactionValidator interface, that allows coding in them the
universal rules, suitable for the whole groups of totals. In order not to repeat the same rule in
a script-validator on each total, it can be transferred directly to the driver. For this purpose in a
driver script it is necessary to redefine the virtual method ValidateTransactions, having exactly
the same signature as it is described above.

Example of the universal rule existing for all totals: the sum of transaction can not have a
fractional part, less than one kopeck. This rule is checked by the DefaultTotalDriver driver. If
necessary this rule can be toughened (for example, to forbid kopecks in the sums at all) or to
be abolished completely. To simplify the work with this rule, the DefaultTotalDriver driver
defines the virtual method ValidateAmount(TransactionValue transaction). To cancel the rules
about fractional kopecks it is enough to redefine an empty method ValidateAmount in the
driver script and not to transfer the control to the base class method. Like this:

protected override void ValidateAmount(TransactionValue transaction)

{
}

// do nothing: any amount is valid

Column providers

| The

Column providers are used to create additional levels of report details (data grouping).

There are initially two Column providers in the system by default: documents and dictionaries.

The provider of documents provides a possibility to detail the reports by:
e time (periods):

= days;

= weeks;
* months;
= quarters;
= years;
e directly by the documents.

The provider of dictionaries provides a possibility to detail the reports in addition to the values of the
dictionary itself by the values of its properties-links.

If this level of details is insufficient for some dictionary being furnished by the column provider by
default, an own column provider can be created for it. Click Column provider script in the dictionary edit
form to create the column provider. During creation of a new dictionary, the provider of its columns is
not created by default.

© 2018 Ultimate 239

Developer

ULTRAATE

SOLID

The list of all column providers can be found in the dictionary "Scripts". Besides, the column provider of
particular dictionary can be opened from its edit form:

[5 Edit «Agents» = B2

-

[Dictionary: 1592 | ¥ SQLscript % Class code | 5 Eventscript | [iii] Column provider script || [Fj OK Save Cancel

Main | Properties | Link tables | Lists | Commands | Print forms

i=p
=

Mame Agents
1
1
\J
Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)

12 | namespace Ultima.Reporting.ColumnProviders -

14 internal partial clas=z AgentsColumnProvider

m

=i

public IEnumerable<TotalColumny» GetColumns ()
return new TotalColumn/|]

new SpaceTotalColumn {

DictionaryType =
DisplayFormat =

L B3 B3 B B B BRI B RO B e e
1m0 bk L B

O 10 0 -]

}: 2

The scripts of column providers implement [TotalColumnProvider interface,

(from

Ultima.Server.Reporting.ColumnProviders namespace) which implements in turn the following methods:
e GetColumns returns enumeration of the columns, which will be interpreted by the report mechanism
as additional dimensions:

public IEnumerable<TotalColumn> GetColumns()

{

}

return new TotalColumn[]
{
// dimension
new SpaceTotalColumn {
Name = "GroupAgentID",
Caption = "Group agent",
DatabaseName = "GROUP_AGENT_ID",
DictionaryType = typeof(Agents),
DisplayFormat = "{ID}:{FullName}"
}
¥

5P SpaceTotalColumn class describes the columns of the total dimensions, is derived from
TotalColumn class, has the following properties:

Name, type of string returns or sets the column name;
Caption, type of string returns or sets column caption;
DatabaseName, type of string returns or sets the column name in the database;

ColumnType, type of TotalColumnTypes returns or sets the column type, can assume the values:

= [dentity —ID;

= Number—number;

= Date —date;

Parent, type of TotalColumn returns or sets the column parent;

RootColumn, type of TotalColumn returns the root parent of the column;

Treelevel, type of long returns or sets the level of column parent;

TransactionsOnly, of bool type returns or sets the flag indicating that the column value
analytical (computing);

S are

© 2018 Ultimate

240

ULTRAATE

Developer SOLIn

= FullName, type of string returns or sets a full name of the column;
= FullCaption, type of string returns or sets a full caption of the column;
» FullDatabaseName, type of string returns or sets a full name of the column in the database;
= Nullable, type of boolreturns or sets the flag indicating if the column values can be Null.
= DictionaryType, type of Type returns or sets the dictionary being a dimension of the column;
= DisplayFormat, type of string returns or sets a format to display column values;
e GetloinExpression(TotalColumn column) returns JoinExpression for the column:
public JoinExpression GetJoinExpression(TotalColumn column)

{
return new JoinExpression {
TableName = "ARTICLE_GROUPS",
ColumnName = "ID" },;
}

ZF JoinExpression class describes JOIN expression, has the following properties:
= TableName, type of string returns or sets the table name in the database;
= ColumnName, type of string returns or sets the table column name;
= Type, type of string returns or sets the type of (operator kind) JOIN expression, can assume the
values:
= LEFT;
= RIGHT;
= INNER;
= OUTER.
In the example above, JOIN expression will have the form:

// select * from ARTICLES A
JOIN ARTICLE_GROUPS AG on AG.ID = A.GROUP_ID

Custom reports

P , Need for user reports arises when the totals reports are lacking functionality, and it is necessary to
implement a non-standard report, e. g., with additional data specification, which is unreachable when
dealing with dimensions.

The list of all user reports can be found in the dictionary "Custom reports":

MCusmmreporE = B
2 & Q| & - = Filters i@
Name Caption Guid Script identity Dev. comments

Identity

rE ? TestCustomReport Testcustomreport £265008e-5d4a-42ea-3512-4657ec2a666a 4173

he dictionary records can be filtered by report Name (Name).

The script of the user report selected in the edit form can be opened directly from the dictionary list
form, having selected item Edit script in the context menu.

© 2018 Ultimate 241

ULTRAATE

Developer SOLIn

Button [in the toolbar of the user report edit form allows opening of the report (a form of report
parameters). The functionality is available only for already created reports:

[E% custom reports, 4177 o B
«[Custom reports: 4177 il nefiles ~ en) oK Save =
Mame TestCustomReport
Caption Test custom report en
Guid 33c01ade-e476-4825-9cd9-d5f36 3272372 &
Script Click here to edit the script...
Icon TIEA=R
Large icon “-I
[
Uszer help Edit
Metadata tags
Developer's comments

The user report has the following properties:

e Name —report name;

e Caption —the report name displayed in the screen forms;

e Guid —used to identify a menu item.
Guid is generated automatically at random and, if necessary, (in case of coincidence with Guid of
another object) can be changed:

Guid |33cD1a4e-e476-4825-9cd9-d5F363a7a372 @ == [|33c01ade-e475-4825-9cd9-d5f363a7a372 4| = = [| T8e7I0ff-03e2-4d13-820a-1af0993929b8 4

e Script — link to the script. In case of creation of new user report, the script is created automatically
upon its saving. Click on the link Click here to edit the script... during creation of new user report will
result into saving of the report and its reloading, after that the script edit form will open;

e Jcon —reporticon (with the size of 16 x 16 pixels).

The buttons to the right of icon preview area allow:

% —loading the icon;

—saving the icon previously downloaded to the computer;
25— deleting the icon;

e Large icon —alarge icon (with the size of 32 x 32 pixels);

e User help —a comment to the report, which end the user can see as a hint, dropping down in case of
mouseover at the report. The comments are entered for each of system languages in the form opened
by clicking the link;

e Metadata tags —tags used to describe report functionality;

e Developer's comments —comments of application developer.

The user reports employ the functionality of totals reports, implemented with the system. This implies
the task of the application developer during writing of the user report - to provide the data of own
report similarly to the total data, which can be handled by the report mechanism.

ZF The scripts of user reports implement IReportDataSource (from Ultima.Server.Reporting.DataSources
spacename), which, in its turn, implements the following methods:
e GetTransactionsSqlreturns a query for transactions (transactions);
e GetBalanceSqlreturns a query for balances (remains);
e GetReportColumns returns the report columns (dimensions and variables):
public IEnumerable<TotalColumn> GetReportColumns()

{

© 2018 Ultimate 242

ULTRAATE

Developer SOLIn

return new TotalColumn[]

{
// date
new DateTotalColumn {

Name = "TransactionDate",

Caption = "Process date",

DatabaseName = "TRANSACTION_DATE",

TransactionsOnly = true

s
// document
new DocumentTotalColumn {

Name = "Document",

Caption = "Document",

DatabaseName = "DOCUMENT_ID",

TransactionsOnly = true

s
// dimension
new SpaceTotalColumn {

Name = "ProductID",

Caption = "Product",

DatabaseName = "PRODUCT_ID",

DictionaryType = typeof(Goods),

DisplayFormat = "{ID}:{Name}"

bs
// variable
new VariableTotalColumn {

Name = "Amount",

Caption = "Amount",

DatabaseName = "AMOUNT",

Modifiers = new[] {
VariableTotalColumnModifier.In,
VariableTotalColumnModifier.Add,
VariableTotalColumnModifier.Sub,
VariableTotalColumnModifier.OQut

}.ToList()

}
¥

}

The base class of the report column TotalColumn has the following properties:

= Name, type of string returns or sets the column name;

= Caption of string type, returns or sets column caption;

= DatabaseName of string type returns or sets the column name in the database;

= ColumnType of TotalColumnTypes type returns or sets the column type, can assume the values:
= /dentity —ID;
= Number—number;
= Date —date;

= Parent of TotalColumn type returns or sets the column parent;

= RootColumn of TotalColumn type returns the root parent of the column;

® TransactionsOnly of bool type returns or sets the flag indicating that the column values are analytical
(computing);

= FullName of string type returns or sets a full name of the column;

= FullCaption of string type returns or sets a full caption of the column;

» FullDatabaseName of string type returns or sets a full name of the column in the database.

The DimensionTotalColumn class describes the columns of dimensions, is derived from TotalColumn,
has the following properties:
= Nullable, type of bool returns or sets the flag indicating if the column values can be Null.

© 2018 Ultimate 243

ULTRAATE

Developer SOLIn

The DateTotalColumn class describes the columns of temporary dimensions, is derived from
DimensionTotalColumn class.

The DocumentTotalColumn class describes the columns of dimensions-documents, is derived from
DimensionTotalColumn class.

The SpaceTotalColumn class describes the columns of other dimensions, is derived from
DimensionTotalColumn class, has the following properties:

= DictionaryType of Type type returns or sets the dictionary being a dimension of the column;

» DisplayFormat of string type returns or sets a format to display column values;

= Treelevel of long type returns or sets the level of column parent.

The VariableTotalColumn class describes the columns of variables, is derived from TotalColumn class,

has the following properties:

= Modifiers of VariableTotalColumnModifier type returns or sets a list of modifiers for the variable, can
assume the values:
= Default =0;
" In=1,
= Add =2;
= Sub=3;
= Out=4.

e GetSortOrderColumns returns a set of columns for sorting of transactions:
public IEnumerable<string> GetSortOrderColumns()

{
}

e GetCalculatedTransactionsDate returns a date, for which the transactions are calculated;
e GetActualTransactionsDate returns a date of transactions actuality (the earliest date, on which the
changed document exists).

return new[] { "TransactionDate", "Document" };

Print forms

=i Print forms are used to bring system objects for printing (to printer or export to the file). They
were briefly described in the first chapter in the section Print forms. Print form represents the template
and a script providing data to fill the template. XtraReports library-engine is engaged in processing of a
template (=+ documentation to it is available on the official website of the developer).

The printing is available both from a list form, and editing form in dictionaries and documents.

Moreover, a set of forms to be printed in a list form and in an editing form can both differ and overlap:

e when printing from the edit form the only editable object is brought for printing — dictionary record
or adocument - opened in the edit form;

e when printing from a list form a list of objects is brought for printing (one or more), marked by flags in
it.

List of all printed forms can be found in the dictionary Print forms:

% Print forms o =

e I ¢ @ e F & Q ol & - @ v

Name

Caption Print engine

Print forms » ? Dictionary print form ¥R
700 Invoice print form ¥R
1814 Test print form ¥R

© 2018 Ultimate 244

http://documentation.devexpress.com/#XtraReports/CustomDocument2162

ULTRAATE

Developer SOLIn

The dictionary window is divided into two parts: on the left the print forms tree of groups is displayed,
on the right — the list print forms of the group chosen from the left.

Dictionary records can be filtered by the Name of a printing form displayed in screen form (Caption) and
Tags (Tag).

To open a script of the chosen dictionary list command print form is possible in the form of editing
directly from a list form of the dictionary, chosen the item Edit script in a context menu.

Print form has the following properties:

(iger Print forms, 13047 o B =

*[Print forms: 13047 (] nofiles ~ en (g £ oK Save Cancel
Print form Parameters | Dictionaries | Documents | Subtemplates

Caption Sales invoice (Russian) en o,

Template 101061 bytes 2| w o -

Mame |Ca... |Type...|Isr... |Save...|Sftri... |Sor... |Defa... |Referenced ...

Script Click here to edit the script...

Script group Accounting b

Parameters 2) None Parameter list Custom form

Leon P E s

User help Edit

Metadata tags

Developer's comments

Caption — name of a printing form displayed in screen form;

Template — template of a print form. For each engine a personal template is used which is chosen
automatically at the choice of the engine. Template control element displays its volume and allows:

£ — to open the template edit form (available only for the engine XtraReports);

~* — to save the template into the file;

| — to load the template from the file.

Each of the engines has its own forms (methods) of editing its template, they will be described in

appropriate sections;

Script — link to the script. During creation of a new print form the script is created automatically at its

saving. by clicking the link Click here to edit the script... during creation of a new print form it will lead

to the saving of a form and its reset, then the form of script editing will be opened.

Scripts of print forms are inherited from the class PrintFormBase, which in turn realizes the IPrintForm

interface. More detail about them will be written further;

Script group — group which possesses a print form;

Parameters — the use of additional parameters before running a print form:

= None — additional parameters will not be requested;

= Parameter list — creation of a print form will be preceded by opening of a standard form (it is
generated by the system Ultimate AEGIS® automatically), in which it will be offered to the user to
fill a number of parameters;

© 2018 Ultimate 245

ULTRAATE

Developer SOLIn

= Custom form — creation of a print form will be preceded by opening of a special additional form
(designed by the applied developer), in which it will be offered to the user to fill a number of
parameters.

e Parameter form — special form with additional parameters. It is necessary to choose it in case in the
item Parameters the option Custom form is chosen. This form has to be previously designed by the
applied developer, for example, in Visual Studio, and is placed in the public client module (in detail
the process is described in the section Request forms of parameters of interactive commands);

e Jcon — print form icon (in size 16 x 16 pixels).

Key buttons to the right of the preview area of an icon allow:
" —toload anicon;

— to save the icon loaded earlier on the computer;

&5 — toremove anicon;

e User help — a comment to the command which the end user can see in the form of the hint (hint)
which is dropping out at mouseover at the command. The comment is added for each language of the
system which is opening by clicking the link in the form;

e Developer's comments — applied developer comments;

e Metadata tags — tags, used to describe the functionality of the print form.

A number of parameters of a print form is grouped in semantic tags.

A In the tab "Parameters" additional parameters are listed, that are used in the construction/filling of
the print form. All these parameters are used (on a standard form) in case in the item Parameters the
option Parameter list is chosen. Parameters can be filtered by Name in according to the text added into
the field “Name”Name". Each parameter has:

e Name — parameter name;

e Caption — name displayingin screen forms;

e Type ldentity — parameter type (for more details see the section Data types);

¢ /s Required — flag, indicating whether the parameter is required to fill;

e Save History — flag, indicating the need to remember the last user-added value;

e String Size (available for data types Text and String) — limits the parameter size in specified value;

e Sort index — index, by which the parameters in a screen form will be sorted. As index values any
integers can be used. Parameters will be ordered in the form from top to down in increasing order of
the index;

e Default Value (is available for all data types except Binary) — parameter value by default which is
used in the form of additional parameters;

e Referenced Dictionary ID (is available for data types Long)— dictionary ID (object), to which the
parameter is a link.

M Inthe tab “Dictionaries” alist of dictionaries is given for which this print form is used:

Parameters | Dictionaries | Documents | Subtemplates

Single record Q Enabled Disabled (©) Al | & Record list Q Enabled () Disabled ©) Al | &
Dictionary Name Dictionary Caption . Dictionary Name Dictionary Caption -
AccOperation Access operation = AccOperation Access operation =
AppCluster Application duster AppCluster Application duster
AppServer Application server AppServer Application server
Attachment Attachments Attachment Attachments
AttachmentType Attachment type AttachmentType Attachment type
Balance Balances Balance Balances

The list represents the list of all dictionaries, in which the flags can be marked by those, for which this

print form will be used. The tab is divided into two parts:

e in the left part of the tab "Single record" the dictionaries are listed, in which a print form is used for
printing of one record of the dictionary. This print form will be available for printing from an editing
form of records of the chosen dictionaries;

© 2018 Ultimate 246

ULTRAATE

Developer SOLIn

e in the right part of the tab "Records list" the dictionaries are listed, in which a print form is used for
printing of several dictionary records (marked by flags in its list form). Respectively, this print form
will be available for printing of the chosen dictionaries from the list form .

The same print form can be used both for printing of one (Single record), and for printing of several
(Records list) dictionary records. In this case at an identical template in a script of a print form two
different methods should be used for filling it with data.

Lists can be filtered by Dictionary name in according to the text added into the field Dictionary name.
Also, the lists can be filtered in addition by flags:

e Enable — in all dictionaries marked by the flags;

e Disable — in all dictionaries not marked by the flags;

e All — in all dictionaries regardless of the set flag.

To clear the contents of the filter and to display the complete list of dictionaries is possible by clicking
the key button 4#.

A Inthe tab “Documents” a list of documents (types and subtypes) is given for which this print form is
used:

Parameters | Dictionaries | Documents | Subtemplates

Single record Q Q Enabled Disabled (@) All | &2 Record list Q Enabled () Disabled (@) All | g#
Subtype Name Subtype Caption - Type Name Type Caption =
¥ |+ Type Name: AccountableCash L Purchase Purchases
Transfer Transfer 1 Sale Sales
v Type Name: AccountStatement CashPayment Cash payments
Imported Imported InterstoreTransfer Inter store transfers

Processed Processed EmployeeCashPayment Employee cash payments

w Type Name: AgentEmployeeExchange WirePayment Wire payments
AgentToEmployees Agent to employees Encashment Encashments

EmployeesToAgent Employees to agent AgentExchange Agent exchanges

The list represents the list of all documents types and subtypes, in which the flags can be marked by

those, for which this print form will be used. The tab is divided into two parts:

¢ in the left part of the tab “Single record” the documents types and subtypes are listed, grouped in type
in which a print form is used for printing of one document. This given print form will be available for
printing from an editing form of documents of the chosen subtypes;

¢ in the right part of the tab “Records list” the types of documents are listed, in which a print form is
used for printing of several documents (marked by flags in its list form). Respectively, this print form
will be available for printing of the chosen types from the list form of the documents .

The same print form can be used both for printing of one (Single record), and for printing of several
(Records list) documents. In this case at an identical template in a script of a print form two different
methods should be used for filling it with data.

List “Single record” can be filtered by the Type name or Document subtype name according to text added
into the fields Type name or Subtype name. List “Records list” can be filtered by Type name of the
document according to text added into the field Type name. Also, the lists can be filtered in addition by
flags in subtypes/types of the documents:

e Enable — in all subtypes/types marked by the flags;

e Disable — in all subtypes/types not marked by the flags;

e All— in all subtypes/types regardless of the set flag.

To clear the contents of the filters and to display the complete lists of subtypes/types of the documents
is possible by clicking the key button 2.

© 2018 Ultimate 247

ULTRAATE

Developer SOLIn

A Inthe tab "Subtemplates" is a list of auxiliary templates (subtemplates) of a print form is given, used
in the main template by the engine XtraReports:

Parameters | Dictionaries | Documents | Subtemplates

a & =

MName Data

(i, | Subreport 16954 bytes £ |

Subtemplates can be filtered by the Name according to the text added into the field “Name”Name.

Subtemplates can be added ¥ or deleted & by the corresponding key buttons in the toolbar of the tab.
To save added, modified or removed subtemplate it is necessary to click the key button [&.

Each subtemplate has:

e Name — name;

e Data — actually the subtemplate, displayed in the control element with the same functionality < =
=+, as well as the template Template.

P Scripts of print forms are inherited from the class PrintFormBase (from the namespace
Ultima.Server.Printing), which in turn realizes the [PrintForm interface (from the namespace
Ultima.Printing).

The IPrintForm interface realizes the following methods:

e SlimTable GetDataTemplate(string subReportName = null) — returns the data template of a print form:
= subReportName — subtemplate name (optional parameter);

e SlimTable GetData(Type dictionaryType, long id, IDictionary<string, object> parameters) — returns data
of a print form for the specified dictionary record:
= dictionaryType — dictionary type;
= jd — dictionary record id;
= parameters — additional parameters;

e SlimTable GetData(IDictionaryRecord record, IDictionary<string, object> parameters) — returns data of
a print form for the specified dictionary record:
= record — dictionary record;
= parameters — additional parameters;

e SlimTable GetData(Type dictionaryType, long[] ids, IDictionary<string, object> parameters) — returns
data of a print form for the specified dictionary records:
= dictionaryType — dictionary type;
» jds — dictionary records ids;
= parameters — additional parameters;

e SlimTable GetData(IDictionaryTable records, IDictionary<string, object>parameters) — returns data of a
print form for the specified array of the dictionary records:
= record — dictionary records;
= parameters — additional parameters;

e SlimTable GetData(long id, IDictionary<string, object> parameters) — returns data of a print form for
one document:
® jd — document id;
= parameters — additional parameters;

e SlimTable GetData(long[] ids, IDictionary<string, object> parameters) — returns data of a print form for
several documents:
= jd — documents ids;
= parameters — additional parameters;

© 2018 Ultimate 248

ULTRAATE

Developer SOLIn

e SlimTable GetData(IDictionary<string, object> parameters) — returns data of a print form (does not
receive any object at an input):
= parameters — additional parameters.

The class SlimTable — a container of data for printing forms — realizes the IEnumerable and ITypedList
interfaces. Its property TableName — a container name. In case if a print form has subtemplates
(subtemplate) names of containers have to coincide with subtemplates names.

Thus, in a print form script it is necessary to set the data template of the print form and to fill it with
data, having redefined methods GetDataTemplate and GetData:

[Import]

private IDocumentManager DocumentManager { get; set; }

public override SlimTable GetDataTemplate(string subReportName = null)
{

var template = new SlimTable();
template.Fields["BuhNo"] = typeof(string);
template.Fields["BuhDate"] = typeof(DateTime);
template.Fields["CurrentDate"] = typeof(DateTime);

return template;

public override SlimTable GetData(long recordId, IDictionary<string, object> parameters)
var doc = DocumentManager.GetDocument(recordId) as PurchaseDocument;

var buhNo = doc.AccountingNo;
var buhDate = doc.AccountingDate;
var currentDate = DateTime.Now;

var data = new SlimTable("Report");
data.Add(new

{
BuhNo = buhNo,
BuhDate = buhDate,
CurrentDate = currentDate,

1)

return data;
}
To specify the heading of a print form (which is visible in a preview window), it is necessary to specify
the SlimTable.Caption property. If the heading is not specified, by default the name of a print form will
be used in the user language with the number of the document (if any).

Integration tests

Integration tests are scenarios of check of system work, which have to lead to the predetermined
results. Unlike the modular tests, working with most isolated program fragments, integration tests
usually cover several interacting processes of different layers of the system. Large functional blocks are
the purpose of the verification of integration tests, such as commands over the documents, fragments of
business processes, etc. The set of all integration tests represents the specification describing correctly
working system. In ideal situation all functionality of the system has to be covered with such tests.

Carrying out the integration tests, the system saves the report on results of the performance: list of
tests; time of their performance; mistakes that occurred at their start. Test execution without errors
means that the system operates in accordance with its specifications.

© 2018 Ultimate 249

ULTRAATE

Developer SOLIn

Realization of a new business process, for which the detailed Test Task is developed, has to be
accompanied by writing of the integration tests covering all aspects of the process. TDD/BDD
methodology (Test-Driven Development — the development based on the testing, Behavior-Driven
Development — the development based on the functioning) demands that tests have been written
before the realization of services: in this case they play a role of the acceptance tests. As soon as the
acceptance tests are in a process of carrying out, Test Task can be considered as executed. Defects in
Test Task and errors of realization, revealed during testing, have to find their reflection in new tests. The
regression tests, which check the lack of concrete errors, guarantee that these errors will not arise again

in the future.

Any changes in the existing functionality of the system have to be accompanied by the start of tests.
Usually it is provided automatically by means of the server of the constant integration. In spite of the
fact that successful execution of tests does not guarantee absolutely correct work of the system (as a set
of tests can not cover all situations), good tests give an acceptable idea of the system reliability.

Integration tests tools

l . .
o
I-" IL_..; | ntegratl on test can be found in [Dictionary commands & User commands =82 Total drivers ZF all scripts
the dICtlonary «Integratlon Q Document commands (5 Tasks [R:] Custom reports | Jgd Tests -
tests»Integration te sts”, which contains listcommands ~ ~ [i& Print forms % Webservices | i Integration tests
texts as for the platform so for Saripting [l Integration test results
Configu ration: Execute all tests
led Integration tests = B
e F & 2 e F & o o | B [¥ B Execute all tests & -
Name Identity Caption Active
v iIntegration tests i 34369 Kernel tests.DictionaryManager v
v Warranty 45347 Kernel tests, UltimaDbManager & Edit v
Frant office 34372 Kernel tests.DocumentManager & Delete v

Back hub))
34527 Configuration.Services L Edit script |: b | ZF Records
Start now L Scripting
=P
Select rows =

Select cells

Miscellaneous

Dictionary window is divided into two parts: test groups tree is displayed on the left side, and text list of
selected from left group is on the right. The dictionary records can be filtered by text name (Name) and

Tags (Tag).

By command Execute all tests of toolbar as homonym command of main menu can starts the executing of
active commands (marked by flag Active) of integration tests.

© 2018 Ultimate 250

ULTRAATE

Developer SOLIn

Each test contains one or more script (class), each script - one or more test-case (methods):

¥ Integration tests, 34369 = = =
+ Integration tests: 34369] nofiles = en [£ Start now 0K Save Cancel
Integration test Scripts
Caption Kernel tests.DictionaryManager en — i}
Friss Integration tests - Integration test script Digplay name
Metadata tags ¢ | IntegrationTestsForDictionaryManager 34387 Records

IntegrationTestsForDictionaryManager 34390 Scripting

IntegrationTestsForDictionaryManager 34383 Miscellaneous
Developer's comments

Integration tests for dictionaries.

Caption —text name;

Folder —a group, the text belongs to;

Active —tests with set flag will be executed by command Execute all tests;
Metadata tags —tags used to describe text functionality;

Developer's comments —comments of the application developer;

e Scripts —text script;

The scripts can be created £ or removed & using corresponding buttons in the toolbar:

in case of script creation, edit form will be opened. Script will have on default the name
IntegrationTest with numeral suffix;

you must specify the script name, which will be displayed in the test execution totals;in the field
Display name

In case of removed script will be removed not only from the test, but also from directory Scripts;
The script can be opened in the edit form by double-click of the left mouse button on it in the list.
The script of the test selected in the edit form can be opened directly from the dictionary list form,
having selected item Edit script in the context menu.

Script execution order is given by transferring of selected script by pressing i and . on the panel,
execution order —from up to down;

Test-case execution order - methods inside script - also is from up to down.

Test-cases usually writes of Arrange-Act-Assert pattern for standard unit-test: properties preparation,
action, results checking. Thanks to the strict order of it execution the big business process can be divided
into small stages, each of which will check separately.

Button - Start Now on the tool panel of test editing form (also homonym paragraph of context menu of
test list form) let execute it immediately. In the edit form of the script, buttons test button - Run script
(to run the current script) and - Run all scripts (to run all scripts of the current integration test) are
available:

© 2018 Ultimate 251

Developer SOLIn

[# IntegrationTestsForDictionaryManager34337, 34389 = B 2
+E Scripts: 24389 [| [E+ ~| @ Checksource @ @ = 2 Goto |lneno | CurrentElement |4~ ~
Script text | Resources | Genmerat: Script type |32 Integration test
12 | namespace Ultimg —
13 { Parent 34369 Kernel.DictionaryManager EA
:14 internal par Run script 5~ Run all scripts
15 { u]
16 [Int ?g "8 Seripts Records {this script) "
17 public v Seripting "
18 { Mizcellaneous e
19 var
20 Asse
21 Double-click
2 recq Feai
23 Asse P
24 1 x
25
26 [IntegrationTest(@"SaveRecord fails if NewRecord
27 public void SaveRecordFailsIfMewRecordWasntCalles
28 {
29 Assert.Throws<UltimaException>{() =>
3@ {
31 var record = new IntegrationTestRun();
32 DictionaryManager.SaveRecord(record);
33 3N
zf) -

< >

| Errors | | Properties || Find all || Branch history | | Changes history |

As arule, integration tests associate with data base. Do not influence to the real accounting the test
executes in the separate transactions, which always recoiling. Each test (all scripts and cases) execute in
one transaction, that is why several tests can be executed parallely in case package start.

[k
M The results of running tests are saved (and automatically opens upon completion) in the directory
of the results of the «Integration test results»:

@ Integration test results = =R
& @&l ~ | | LastMonth ~| = < Filters & 53 - &
Passed Date « | Summary Duration, ms Performance index Test name Performance « |Duraton |Average |Qutput
0 Failed 11/11/2015 2:21:24 AM 0 tests passed, 1te... 27516 - v @ Kernel. DictionaryManager ! 7 7522 3Ftestscri.. &
v | @ Passed 13 tests passed, O t... 312004 v @ Seriptng | 7 4839 | 4tests pa...
0 Failed 0 tests passed, 1 te... 4566 ML ai-‘a\l\ dictionary scripts are imported ! 10 482 Ok. =
© Faied 0 tests passed, 1 te... 663 @ Dictionary event handlers are exec... 2] 987 Ok,
© Faied 0 tests passed, 1te.., - 4 @ Dictionary commands are executed 8 3084 | Ok,
- . @ Al dictionary scripts are compiled 5 2 45 Ok.
© rai=d 0 tests pessed, 1te... i : v @& Records 5 1455 %16 7testspa...
© raied 0 tests passed, 1te... A & | saveRecord fails if NewRecord wa. .. 8 29 131 Ok,
© Faied 0 tests passed, 1te... 4733 6 & saveRecord fails if required proper. .. 4 270 435 Ok.
Q) Faied p e, 4434 93 @ saveRecord saves inner objects 1 244 274 Ok.
€ Faied , 1te.. 6124 3 @ Loadrecord loads a record with inn... 1 193 261 Ok,
0 Failed 0 | 1te... 6360 g9 @ SaveRecord creates a new record ... 1 182 243 | Ok,
© Faied 0 tests passed, 1te... 4535 @ newRecord assigns ID to a recard | 0 38 63 Ok
€ Faled 0 tests passed, 1te... 1138 6 @ | saveRecord updates a record | | 7 460 315| Ok.
~ @ Miscellaneous | 0 42 71| 1testspa...
@ NewRecord assigns ID to a record 2 34 68 | Ok.
v & Kernel.UltimaDbManager 4 994 1575 | 1 test sari...
v 6 Transactions 4 960 1526 | 7 tests pa...
@ ServerCall,RunParallel opens a ne... 10 61 251 Ok,
@ MNew ServerCall opens a new conn... 3 54 232 Ck.
@ | new UltimaDbManager shar . 2 24 44 ok,
13(1) Qe 2oszos @ Nested UltimaDbManagers without ... 1 40 34 Ok, l

The directory window is divided into two parts: Integration test packages list is displayed on the left
side, and results of selected from left tests in the tree structure is on the right.

Executed tests can be filtered by:

e , by which executed tests metadata version was marked (paragraph(All) — for all versions); Time of
Integration test execution:

e the runtime of integration tests, for: Last week (Last Week), last month (Last Month), last year (Last
Year), all dates (Any Date).

© 2018 Ultimate 252

ULTRAATE

Developer SOLIn

For executed integration tests the follows are shown in the list:

e Date —date and time of integration tests execution;

e Summary — execution result: Number of passed (tests passed) and failed (tests failed) integration
tests;

e VersionTag.Name —tag, by which operated metadata version was marked integration tests;

e Passed —execution result:
= @ Passed - all test-cases of all scripts was passed
* £ Failed - atleast one test-case of one integration test script was failed.

Also available are analytical columns, which allow evaluating the performance of launch:

e Average duration- average runtime in milliseconds;

e Performance index — index of performance (ranging from -10 slowly to +10 quickly).

You can easily enable conditional formatting via analytical columns in Data bars so that performance
issues were immediately evident.

The results of performing the selected integration testsare displayed to the right in the tree structure:
test cases are grouped into scripts, which, in turn, grouped by tests. Icon before the name shows the
execution result: & — if passed and &3 if failed. In case at least one test-case was failed, script
execution result and all test also is consider as failed:
e Test.Name —name of integration test, script or test-case (script method);
e Passed —execution result - passed, in case flaf set;
e Duration —execution time in milliseconds;
e Output —execution result:
= Forintegration test - the number of passed (test scripts passed) and failed (test scripts failed) scripts;
= Forscript - the number of passed (tests passed) and failed(tests failed) test-cases;
= Fortest-cases - passed (Ok) or failed(Error).

Also available in analytical columns, which allow evaluating the performance of a specific test result:
e Average duration— average execution time of this test case in milliseconds;
e Performance index — index of performance (ranging from -10 slowly to +10 quickly).

For failed test-case in the field Output the error text is also shows (the full text is displayed by cursor
rollover):

[5) Integration test results o B B
&) | msapaev + | |LastWeek - || = 44 Filters @ o2
Date Summary VersionTag.Mame | Passed Testname Passed |Duration, ms | Output -
12/9/2014 8:3%:55 PM 1 tests passed, 0 tests failed, msapaev @ Passed v Q Kernel tests.DocumentManager 4731 1 test scripts passed, 1 test scripts failed.
b |12/9/20149:45:32PM 1 tests passed, 1 tests falled. msapasv €3 Failed v @ QDE‘J“‘E"‘E 2792 5 tests passed, 1 tests failed.
& NewDocument assigns ID to a document i 137 Ck.
3 0 SaveDocument fails if NewDocument wasn't called 130 iError. U\uma.Tesung‘InbegrauonTestEx%
& SaveDocument fails if required properties aren't set W 517 Ck.

Error. Ultima. Testing.IntegrationTestException: Assert. Throws failed. Expected: <UltmaException:, Actual: <InvalidOperationException: Document #0 is not initialized. Use DocumentManager. NewDocument() to create documents. =.
at Ultima Testing. Assert. Throws(Type exceptionType, Action action, String message, Object]] parameters) in c: work\|Jltimakernel\Interfaces Ultmalnterfaces\TestingAssert. cs:line 226
at Ultima, Testing, Assert. Throws[TException] (Action action, String message, Object[] p

S T ST T G E T T T T TS T e T TTZTORT
v @ Scripting 1912 4 tests passed, 0 tests failed,
& all document seripts are imported 271 Ck.
@ All document scripts are compiled 197 Ck.
958 Ok.
484 Ok, -

eES EN N ENEY

@ Document event handler scripts are executed

& Document commands are executed

© 2018 Ultimate 253

ULTRAATE

Developer SOLIn

From test execution results you can get into integration test editor or into it script by double mouse left
button click on corresponding result line. Double-click on result line of concrete test-case (script
method) opens script editor on the need line:

J# IntegrationTestForDocumentManager34599, 34601 = @ R
L] Scripts: 34601 (2 £ [+ | @ Checksource | & = Gotoline Current Element | <% NewDocumentAssignsID() = OK Save Cancel
Script text | Resources | Generated Text (read-only) | Generated Resx {read-only) | MEF Cache (read-only)

31 } A
32

33 [IntegrationTest(@"SaveDocument fails if NewDocument wasn't called")]

34 public void SaveDocumentFailsIfNewDocumentWasntCalled()

EH {

36 Assert.Throws<UltimaException»(() =>

37

38 var doc = new AccountStatementDocument(); -
39 DocumentManager.SaveDocument(doc);

48 DB

41 }

42

43 [IntegrationTest(@"SaveDocument fails if required properties aren’'t set")]

44 public void SaveDocumentFaillsIfReguiredPropertiesAreNotSet()

45

46 Assert.Throws<UltimaException»(() => v
< >
Errors ‘ Properties || Find all || Versions history || Changes history ‘

If the test executed on the metadata branch, marked by tag which differ from current branch, following
message will be displayed when you trying to open script or test. Besides it, test results which aren’t

correspond to the current metadata version are shown in .
[El Integration test results = =R
&) | msapaev ~ | |LastWeek - « Filters &9 E -
Date Summary VersionTag.Name | Passed Test name Passed |Duration, ms |Output -
55PM | 1 tests passed, O tests failed, | msapae: @ Passed ~ @) Kernel tests. DocumentiManager 731 1 test scripts passed, 1 test scripts failed.
N ¥ = passed, 1 tests failed. msapaev QD Faied ~ € Documents 2 5tests passed, 1 tests failed.
12/9/2014 11:05:00 PM 1 tests passed, O tests faled. msapaev & Passed @ NewDocument assigns ID to & document | Ok.
Q SaveDocument fails if NewDocument wasn't called 130 Error, Ultima Testing. IntegrationTestEx...
6 SaveDocument fails if required properties aren't set e 517 Ok,
@ SaveDocument creates a new document if required ... i 440 Ok,
& saveDocument updates a document i 129 Ok.
@ saveDocument and GetDocument methods handle ta...| [1432 Ok,
w 6 Scripting V| 1912 4 tests passed, 0 tests failed.
6 All document scripts are imported V| 271 Ok. =
6 All document scripts are compiled | 197 Ok,
6 Document event handler scripts are executed | 958 Ok,
& Document commands are executed v 434 Ok, -

For failed tests exclusions are automatically saved. This exclusions can be opened fro receiving detailed
information (if the test had been executed in the different metadata version, the warning would be
shown):

[El Integration test results = B &R
g

& |msapaev ~ | |LastWeek - < Filters & B &

Date 4 | Summary WersionTag.Mame | Passed Test name Passed |Duration, ms |Output -
39:55PM | 1 tests passed, O tests failed. msapaev & Passed & Closed period is not violated | 117 Ok.

PM |1 tests passed, 1 tests failed, msapae € Faied | ~ € saiptng 822 3 tests passed, 1 tests falled.
12/9/2014 11:05:00 PM 1 tests passed, O tests failed. msapaev @ Passed | 6 All document scripts are imported | 201 Ok,
i e .
12/9/2014 11:09:56 PM 1 tests passed, 0 tests failed. msapaev & Passed 6 Al document scripts are compiled 203 Ok,
6 Document event handler scripts are executed | 368 Ok, =
¥ |12/9/2014 11:12:18 PM 0 tests passed, 1 tests failed. msapaev €3 Failed . o e 3
Q Document commands are executed - 43 Error. Ultima. Scripting. InvalidScriptExce...
di
-
Delete
Select rows
Select cells
Browse exception...

© 2018 Ultimate 254

ULTRAATE

Developer SOLIn

As exclusion, as usual, you have opportunity to get into concrete script line, which caused error:

i) Exception details o B R
Exceptions Details Properties
Ultima. Scripting. InvalidScriptException: ... | | The script is invalid and cannot be loaded: 20405, Data (Collection)
at Ultima, Server, Saripting, DocumentCommandManager ExecuteCommand(Inté4 id, Int64 recordld, HelpLink

IDictionary " 2 parameters) in c:\workUltimakernel\ServeriUltimaServerImplementation\Scripting I
\DocumentCommandManager. cs:line 106 HResult ~2146233088
at InnerException
Ultima, Scripting. IntegrationTests. IntegrationTestForDocumentManager 35022, DocumentCommandsAreExecut. Messane The script is invalid and cannot be loaded: 20405,
ed{) in c:\work'\DistribYAppServer \Saripts\Saript35024.cs:line 102 -

at Ultima. Server. Testing. IntegrationTestManager ExecuteIntegrationTestCase (L azy " 2 testCase) in ¢ Scripts 20405
WworkUltimakernel\Server \UltimaServerImplementationTesting \IntegrationTestManager . cs:line 234 Source UltimaServerImplementation
StackTrace at Ultima. Server. Scripting. DocumentCommandManags
TargetSite
Seript locations
Exception data
IntegrationTestForDocumentManager35022 (35024): line 102
Name Data

ShowDocumentTransactionsDocumentCommand 1040%1;405): line 1
L

You need to remember, that old exclusions can’t be explore in this way - either exclusion can’t be
deserialize because of mismatch of metadata base, or line in StackTrace is not correspond to current
script condition.

Integration server TeamCity execute tests suit at every distributive assembly. Error in test execution
cause the assembly failed and all interested persons receive messages.

Client scripts

All types of scripts discussed previously are performed on the server side. In addition to them, the
system supports several specific types of scripts that are performed on the client side:

e Dictionary editor scripts — allow including additional screen or business logic into standard forms of
dictionary edit; replace or add new default controls;

e Documents editor scripts — provide similar opportunities for the standard forms of documents.

Dictionary editor scripts

Functional of standard edit form satisfies most of the requirements to the usual directories. However,
quite often there are reference books that to work correctly lacks some detail: additional validation on a
text field, a non-standard element of management, filter or an event handler. Dictionary editor script
can solve a lot of these small tasks, relieving the programmer from having to make the shape of the
dictionary from scratch.

Editor scripts can solve the following issues:

e React to download events, creating and saving records.

e Load and display additional information in the form (map, schedule of rates and etc.).
e Block or hide fields depending on the record state or the current user’'s permissions.
e Change one field by changing the value of another field.

o Put filters on the field selection of the dictionaries.

e Create custom controls for fields, for example, Color picker or PictureBox.

e Combine records from multiple directories for collaborative editing.

o Get the information that is available only on the client (fingerprint scan, wice message recording).
o Fill defaults in nested tables, and dictionaries.

o Customize the list of displayed columns in the nested tables.

e Run validation values before sending to the server.

© 2018 Ultimate 255

ULTRAATE

Developer SOLIn

e Calculate on the wing such expressions as Amount = Price * Quantity, amount in rubles at the exchange
rate and so on.

Handler of editing the reference book opens from a form of the reference book on the Editor script button:

[5 Edit =Agents» = E= 2z

[Dictionary: 1592 | 2% SQL script & Class code | [Event script E}l Editor script | [ifi] Celumn provider script L—',‘g oK Save

Main | Properties | Link tables | Lists | Commands | Print forms

Marme Agents
1
1

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)
27 | using Ultima.Toolbox;

28

29 | namespace Ultima.Client.Scripting

380 {

31 [<summary >

32 1andler for the <see cref="Agent"/> dictionary.

33

34 47 <remarks>

35 (// This code executes on the client side by DefaultDictionaryEditForm.
36 FA7 </remarks>

37 internal partial class AgentEditorEventHandler

Newly created handler text shows some possibilities offered by this type of scripts, providing them with
necessary explanations. In particular, the new script adds to a form an element of management
PictureBox. This element of management is added tolLayoutControl, a visual representation of which can
be set up directly on arunning form.

@ If your processor adds additional controls in the form, and the form has already saved the
layout, new elements will be hidden by default. In order to show them in the form, click the
Layout Editor form and place new items on the right places. For forms without a saved layout

new elements are displayed all at once, without further manipulation.

Multilingual installations layout system is stored separately for each language. If form has
saved layouts for multiple languages, make sure that all items are relevant.

To get access to the script form controls, it is enough to declare the properties of the desired type and
mark them with attribute Control, specifying the name of the editable properties as a parameter:

[Control("Name")]
private Control NameBox { get; set; }

Dictionary editor scripts implement IDictionaryEventHandler interface. The most important application
properties and methods of a handler that can be used in a script:

e RecordType — edited record type;
e |D — edited record ID;
e DataRecord — edited record;

e DisplayFormStatus(string text) — displays the form status indicator (the same as displayed when
executing a command or saving a record).

The handler may affect the behavior of the edit form by overriding the virtual method:
e Attach — allows attaching event handlers to a form.
+IInstance of the form editor of the reference book is passed to the input DefaultDictionaryEditForm.
e Detach — allows you to disable the event handler attached to the methodAttach;
e AdjustStandardControl — replaces the standard control for editing field by nonstandard.
I passed to the input:

© 2018 Ultimate 256

ULTRAATE

Developer SOLIn

e controlHolder — a container comprising a standard control for the field;
e propertyDescriptor, containing the description of the field for which the editor is needed;
e CreateCustomControls — allows you to add additional form controls.
-1 list of control containers controlHolders is delivered at the input;

@ Please note: AdjustStandardControl and CreateCustomControlsmethodsare invoked during
creation of elements of management of a form, therefore the properties marked with Control
attributes at the time of their call aren’t yet available. Accessing a control during the
AdjustStandardControl method call can be done through the controlHolder parameter, having

checked a property namepropertyDescriptor.Name.

Access to controls in these methods provides the ControlHolder wrapper class, which also
provides properties placement of an element on an editing form: field name, data binding
type, etc. If you are substituting a standard item, do not forget to specify the data bound
property (e.g., controlHolder.BindingPropertyName = “Text”).

The handler can react to events in the directory entry editing form by overriding the virtual methods:
e BeforeCreate— is performed before creation of record in reference book, after user presses the
button of creation of a new record.
-+l at the input parameters are passed to create a new entry that you can change or add to;
e AfterCreate — is performed after creating a directory entry, after pressing the record button to create
a new record.
-+l at the input parameters are delivered to create a new record, used to create a new record;
e Beforeload — is performed prior to loading of dictionary record to the form.
-+l at the input a dictionary record code is delivered to be loaded;
e AfterCreate — is performed after opening a dictionary entry, but not in the case of a new entry. Using
the handler, e.g. additional parameters can be loaded into the dictionary record.
+I1 At the inputis delivered an opened dictionary record;
e BeforeSave — is performed before saving of dictionary entry, after the user has clicked a button for
saving.
+I1The saved dictionary record is delivered at input.
o AfterSave — is performed after saving of dictionary record.
+IThe saved dictionary record is delivered at input.
e AfterRejectChanges — is performed after rejecting the user's changes made to the dictionary record.
e DataRecordPropertyChanged — is performed when you modify any property of dictionary record.
1 At the input a copy of PropertyChangedEventArgs is delivered with name of changed feature;
e BeforeValidate — is performed during validation ofdictionary record.
-+l at the input parameters for creation of new record which can be changed or added are transferred;
e Modified — is called to check whether the dictionary record is modified after the last saving.

@ Please note: the majority of methods of the processor return theTasktype that the processor

had an opportunity to call remote services (remote calls to the customer service is always

asynchronous). If the method doesn’t use remote services and doesn’t call other asynchronous
methods, in it it will be necessary to return Task.CompletedTask.

Example text editor directory handler Brand, which was created from a template:

namespace Ultima.Client.Scripting
{
/// <summary>
/// Editor event handler for the <see cref="Brand"/> dictionary.
/// </summary>
/// <remarks>
/// This code executes on the client side by DefaultDictionaryEditForm.

© 2018 Ultimate 257

ULTRAATE

Developer SOLIn

/// </remarks>
internal partial class BrandEditorEventHandler
{
// Declare properties for all controls you need to use.
// Decorate properties with Control("PropertyName") attributes.
[Control("Name")]
private Control NameBox { get; set; }

protected override void AdjustStandardControl(ControlHolder controlHolder,
IBaseDescriptor pd)

// Tweak or replace the default controls here:

if (pd.Name == "MySamplePropertyName")
{
controlHolder.Control = new TextBox();
controlHolder.BindingPropertyName = "Text";
}
}
protected override void CreateCustomControls(List<ControlHolder> controlHolders)
{
// Create custom controls and bind them to the data here:
controlHolders.Add(new ControlHolder
{
Control = new PictureBox
{
Name = "XkcdPictureBox",
ImagelLocation = "http://imgs.xkcd.com/comics/self_description.png",
}s
ShowCaption = false,
ItemName = "XkcdPictureItem"
1)
}
protected override Task BeforeCreate(IDictionary<string, object> parameters)
{
// Supply default values for the new record here:
parameters["Name"] = Environment.MachineName;
return Task.CompletedTask;
}
protected override async Task AfterLoad(Brand dataRecord)
{
// Load additional data to display by your custom controls here:
await Task.Yield();
}

// The following virtual methods and properties are also supported:

// protected override Task AfterCreate(IDictionary<string, object> parameters)

// protected override Task BeforelLoad(long recordId)

// protected override Task BeforeSave(Brand dataRecord)

// protected override Task AfterSave(Brand dataRecord)

// protected override Task BeforeValidate(Brand dataRecord,
ValidationErrorCollection errors)

// protected override Task DataRecordPropertyChanged(PropertyChangedEventArgs e)

// protected override Task AfterRejectChanges()

// protected override bool Modified { get; }

© 2018 Ultimate 258

ULTRAATE

Developer SOLIn

@ Please note: client scripts are run on the client, but stored and processed on the server.
Therefore, the server must have access to all assemblies that are referenced by a client script.
If your script is behaving strangely (no errors while saving, but the MEF-cache is empty and the
script is not loaded on the client), most likely thing is that the server can not find all the
necessary dependencies. Make sure that in the file of configuration of assembly probing path
serverincludes the ThirdParty and Clientfolders with subfolders:
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1”>
<probing
privatePath="ThirdParty;ThirdParty/DevExpress;Client;Client/ClientModules;Client/C
lientModules/Base”/>
</assemblyBinding>
</runtime>

Document editor scripts

This type of scripts is completely similar to dictionary editor scripts. The only difference is that all
methods take in parameters not a directory record, but a document. Document editor script is opened
from a document form by button Editor script:

[Ep wireTransferDocument, 8376 = [EOEE

+[E Document types: 8376 [2 | 3 SOLscript ©f Class code & Event script | [Editor script | [0K Save Cancel

Main | Properties | Table parts | Subtypes | Transactions | Record list print forms | Record list commands

i Setup roles +
Name WireTransfer & Icon 1 o6 P

v

Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache {read-only)
29 | using Ultima.Toolbox;

31 | namespace Ultima.Client.Scripting

e {

33 f/f <summary>

34 '// Editor event handler for the <see cref="WireTransferDocument”/> document |
35 " ¢/ summary >

36 " <remarks>

37 " This code executes on the client side by DefaultDocumentEditForm.

38 ff </remarks>

39 internal partial class WireTransferDocumentEditorEventHandler

The script has exactly the same features and methods as dictionary editor script. Here is the full text of
the document handler WireTransfer, created from a template:

namespace Ultima.Client.Scripting

{

/// <summary>
/// Editor event handler for the <see cref="WireTransferDocument"/> document type.
/// </summary>
/// <remarks>
/// This code executes on the client side by DefaultDocumentEditForm.
/// </remarks>
internal partial class WireTransferDocumentEditorEventHandler
{
// Declare properties for all controls you need to use.
// Decorate properties with Control("PropertyName") attributes.
[Control("SourceAccountID")]
private Control SourceAccountBox { get; set; }

© 2018 Ultimate 259

ULTRAATE

Developer SOLIn

protected override void AdjustStandardControl(ControlHolder controlHolder,
IBaseDescriptor pd)

{
// Tweak or replace the default controls here:
if (pd.Name == "MySamplePropertyName")
{
controlHolder.Control = new TextBox();
controlHolder.BindingPropertyName = "Text";
}
}

protected override void CreateCustomControls(List<ControlHolder>
controlHolders)

{
// Create custom controls and bind them to the data here:
controlHolders.Add(new ControlHolder
{
Control = new PictureBox
{
Name = "XkcdPictureBox",
ImagelLocation =
"http://imgs.xkcd.com/comics/self _description.png",
3
ShowCaption = false,
ItemName = "XkcdPictureItem"
})s
}
protected override Task BeforeCreate(IDictionary<string, object> parameters)
{
// Supply default values for the new document here:
parameters["Comments"] = Environment.MachineName;
return Task.CompletedTask;
}
protected override async Task AfterLoad(WireTransferDocument document)
{
// Load additional data to display by your custom controls here:
await Task.Yield();
}

// The following virtual methods and properties are also supported:

// protected override Task AfterCreate(IDictionary<string, object>
parameters)

// protected override Task BeforeLoad(long documentId)

// protected override Task BeforeSave(WireTransferDocument document)

// protected override Task AfterSave(WireTransferDocument document)

// protected override Task BeforeValidate(WireTransferDocument document,
ValidationErrorCollection errors)

// protected override Task DataRecordPropertyChanged(PropertyChangedEventArgs
e)

// protected override Task AfterRejectChanges()

// protected override bool Modified { get; }

© 2018 Ultimate 260

ULTRAATE

Developer SOLIn

Update of script execution status

For the scripts, which execution takes significant time, it is correct to provide the user with information
about execution progress.

For that purpose, the handler can update the text displayed in the client in the list of executed
operations by filling in the field ServerCall.CurrentCall. Text. The value is added after the progress text:

using (MainForm.DisplayProgress("Progress description"))

If inside one group, set with DisplayProgress, several operations are executed in asynchronous manner,
their values may overlap each other. In this case, they are recommended to split into separate groups.

Script Updated Across Clusters

Development of the configuration is quite often conducted on the servers not united in a cluster. In this
case it is possible that when a developer publishes his script changes to the main branch, and the main
server does not receive the notification. In order to the main server can detect and use the script
changes, beingin the other cluster, it every minute polls the office log of scripts changes. If to start task
scheduler on the serveritis possible to allow this poll.

Journal of scripts changes represents a linking table ScriptUpdates, which keeps the date the last change
on each script at all branches. The table is automatically updated during the editing of scripts and merge
of changes. Finding an update on its branch, the application server dumps the cached version of the
script, and at the next call to the script compiles it again. Due to the journal of changes the developer
can conduct completion of scripts on the separate application server, which is not connected to the
working cluster.

External script editor support

Built-in script editor is quite practical and is readily available on any client machine. Nevertheless it's
still inferior to the full-featured integrated development environments such as Visual Studio. Many
developers lack their accustomed tools, that's why the system can integrate with external script editors.
Base solution has a ready-to-use VSScripting module for the Visual Studio integration. When external
editor support module is loaded all scripted objects get an additional «Open in external editor» or
«Open in Visual Studio» command link (external editor name for the links is provided by the integration
module):

© 2018 Ultimate 261

ULTRAATE

SOLID

Developer
(%5 Tasks, 9360 = B 2
LI E] Tasks: 9360 f] Herdafince -~ en [2 5 Start now 0K CoxpaHuTe ~ CTmenHa
Common Application servers
Mame Total calculation o -
Script Click here to edit the script... Server Name

External editor Open in Visual Studio. ..
Folder Tasks -

| is active | execute single

years months days week day
hours minutes seconds

* 1] 1]
Metadata tags

Dev. comments

v Test
127.0.0.1:8192

v tyzhnyh.i cluster
127.0.0.1:8192

v Ultima.Next ryzhov dev cluster

127.0.0.1:9192
v Vs build 0.28
localhost:8352
v xpoft's cluster
127.0.0.1:8152
v yakovlev.s cluster
127.0.0.1:8192
v vyallie's cluster
localhost: 8080
127.0.0.1:8192

v zebra

Supporting more external editors requires either upgrading the VSScripting module or writing a custom
one. Integrating such a module with the client is easy: all it takes is to implement a simple interface
allowing the system to interact with the module. The interaction is limited to the «open script in

external editor» command:

/// <summary>

/// Interface for external script editors such as Visual Studio.

/// </summary>
public interface IExternalScriptEditor

i.e.: Visual Studio.

{
/// <summary>
/// Opens the specified script for editing asynchronously.
/// </summary>
/// <param name="scriptId">Script identity.</param>
Task EditScriptAsync(long scriptId);
/// <summary>
/// Gets the name of the external script editor,
/// </summary>
string EditorName { get; }

}

The module communicates with an external editor application (such as Visual Studio), creates
temporary files on local disk and optionally provides additional commands. Editor integration module
can interact with the client application just like any normal client module: open child forms, invoke

application server's remote methods, etc.

Note that the system only supports one external editor integration module at a time, so the custom
editor integration module cannot be used alongside with the built-in VSScripting module.

© 2018 Ultimate

262

ULTRAATE

Developer SOLIn

Translation of exceptions

'ﬁ? An exception (errors) thrown by the system can be set out in plain 5
language. Viewing existing and creating new localized values (translations) [j= ngusges
of exceptions can be made in the dictionary Exception translations.

Languages
Spell checker
Translation manager

Exception translators

HBHYTET

Exception translations

|u+| Hot keys

[=i Languages -

45 Misc tools I}
Show possible memory leaks
Test windows and search for leaks

MEF explorer

Preserved objects

lssue trackers

Ohbjects issues

y.? Exception translations = = 22
e 7 & Q|| & [% 1 44 Filters &
Translation ID =« | Translation description Type pattern Message pattern
1 General Orade Exception Crade CRA-
2 A constant wasn't found System constant
5 Cannot delete not empty folder Cradle CORA-02292

The dictionary records can be filtered by Translation description (Translation description).

The localized exception has the following properties:

wep Exception translations, 5 [T CT R
«[Exception translations: 5] nofiles = en OK Save Cancel
Description Cannot delete not empty folder
Type pattern Oradle
Message pattern CORA-02292

use regular expressions
Translation text Cannot delete folder, because it's not empty en

Sort index (1]

Description —exception description;

Type pattern —type of original exception;

Message pattern —text of original exception;

use regular expressions — a flag set if regular expression is used as the value of Message pattern
property (detailed description of the interface can be found on MSDN website =+ eng/rus);

Translation text —text of exception, will be thrown instead of original one;

e Sortindex —sort index. For two localizations of similar exceptions, in which corresponding values Type
pattern and Message pattern coincide, a localization will be used with large value of the index.

© 2018 Ultimate 263

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/ru-ru/library/ae5bf541.aspx

Developer

ULTRAATE

SOLID

|j| Let us consider localization of the exception by the example of error, which occurs during

construction of the report:

P
Error

ERIS]=C)

@ Oracle error

Orade error

Close

"

.

The information can be obtained from the exception details about its type (Type pattern) —this

is Oracle error:

Exception details = B
Exceptions Details Properties
iDevart.Data.Oracle, OradeException (translated)... i | Oracle error a
Ultima.Exceptions, UtimaException (translated): F... Server stack frace:
Devart.Data.Orade. OradeException (translated)... at = frellartinm
And exception text (Message pattern):
Exception details = =
Exceptions Detailz Properties
Devart.Data.Orade. OradeException (translated)... | | Fill exception:) - ,}l |
t Ulltima . Exceptions, UltimaException (translated): Foo.i ORA-00379: not 3 GROUP BY expression =2 Mise
Devart.Data.Orade. OradeException (translated)... | | QUERY: - Data (Collection)
ROWNUM "ROW_ID", HelpLink
Using the obtained data, we create translation for this exception:
u? Exception translations, 13 [changed] o = &R
«[E @ | Exceptiontranslations: 13] nofiles » en oK Save Cancel

Description Fill exception

Type pattern Cradle

Message pattern ORA-00979: not a GROUP BY expression

use regular expressions
Translation text The grouping wasn't used. Use it and try again. en
Sort index 0

After saving of the translation, the next exception thrown by the system during repetition of
actions, which resulted into the previous one, will look as follows:

P
Error

ERIS]===)

@ The grouping wasn't used. Use it and try ...

The grouping wasn't used. Use it and try again.

© 2018 Ultimate

264

ULTRAATE

Developer SOLIn

Version control

Ultimate AEGIS® system supports metadata versioning, which allows developing a
configuration without affecting the work of ordinary users. The branches create
isolation, while the complete graph of the system versions can be represented in a
tree-like structure.

Each branch is virtually an exhaustive model, an off-line working copy of all
metadata independent from other branches. One branch can be used for storing
the actual production version of metadata, the other for developing, the third for
giving a dry run to last changes, and so on. The branches can be synchronized with
each other.

Each branch stores the full development history as a chain of commits. A commit is
a set of changes supplied with additional information (author, date, comments and
number of request, under which the changes were made). All sets of changes that
belong to a particular branch are "read-only" except the last one, to which the
current changes are being made. On the illustration, only the sets 9, 14 and 15 can
be edited.

The same set of changes may belong to several branches. Firstly, when branches
split off from each other, the entire history up to the branching point is common
for them. Secondly, when synchronizing the branches, the commits are transferred
from one branch to another. After the branches have been synchronized, all their
metadata become identical, though the branches history is slightly different.

It is recommended to work with the versioning system in the following way. Each
application programmer starts his own branch and work on it completely
independent of other programmers. To synchronize all changes, programmers use
the central branch "Default", which is always there in the system. The Default
branch is considered the newest, the latest version of metadata and not usable so
far.

To test changes before implementation, a branch called Test (or Stage) is created;
this is used by testers, business analysts and certain end users responsible for
acceptance. The branch syncs with the Default branch from time to time according
to the plan of implementation of new features. If errors occur on this branch during
the test, they are corrected directly on the branch; after that, the changes made are
transferred to the Default branch and become available for syncing to all
programmers.

default dev1

A separate branch called "Production" is created for end users to work on. This
branch syncs with the Test branch only, if, and only if, the functions of the latter has
been carefully checked by testers, analysts and users responsible for acceptance.
Any branch can be marked with a Read-only flag to prevent modifications. This is
recommended to do only with the Production branch.

So, in addition to programmers branches and the Default branch, two more common branches are
created in the system:

e Production —the latest stable version of metadata designed for ordinary users;

e Test —the version designed for testing before implementing.

The application server works with the metadata branch specified in the settings of its cluster. For
example, for ordinary users, the Production branch should be specified in the cluster settings.

© 2018 Ultimate 265

ULTRAATE

Developer SOLIn

Thus, the versioning mechanism allows to:

e isolate metadata versions using the branches;

e branch and, afterwards, sync the branches, thus allowing each programmer to work in his own copy;
e store the entire history of metadata changes providing access to intermediate versions.

Versions tools

The tools, intended for work with a control system of versions, are

&, Compile & Compile
located in the main menu in the tab “Developer”: T3y Reload + Al | §Y Reload +
Tool Tool
ors [commit — R commit
Branch: temp g?:%l'ﬂerge |

e Branch: {Name} — as the name of group the branch is specified, on B History
which the current application server is started. It is a branch temp in @ Validate
the drawing;
e To create new branches it is necessary to use a history form of versions & History, for more details
see in appropriate section;
e £ Compile — list of actions is opened by clicking the key button of
compilation:
= Compile metadata — compilation of metadata, the result will be
creation of binary files of metadata; Regenerate metadata classes
= Compile and reload metadata — compilation and reloading of Regenerate webservice classes
metadata; Regenerate and compile scripts
= Regenerate metadata classes —regeneration metadata classes; Recompile all scripts

%, Compile ~
=1 Y
Tools

b Compile and reload metadata
Bra

Compile metadata

]

= Regenerate webservice classes —regeneration webservice classes;
= Regenerate and compile scripts —regeneration and compilation of all scripts;
= Recompile all scripts —recompilation of all scripts.
The key button icon has two states:
» ared button £ informs on existence of the changes made and not compiled yet in metadata;
= agreen button s informs on relevance of the compiled library of metadata;
e [Reload —list of actions is opened by clicking the key button of reloading: 2 Compe
* [} Reload metadata — reset of metadata and modules (binary files), including Tcl' EER;|ddmetdt
web services; 13 g | Reoodweb sevics
= #) Reload web services —reloading web services, at the same time before reset €' Restart current cluster
the web services will be automatically compiled;
= ' Restart current cluster —reset of the current cluster of applications servers.
The current server sends restart command to neighbors in a cluster, then it is
restarted by itself. The command will wait for server restart.
e [z Commit —by clicking the key button the tool of fixing changes of the current version is started (if it
is not fixed);
e JE Merge —the tool of versions merge of metadata is started when choosing a menu item;
e =} History —the view tool of the versions change history of metadata is started by clicking the key
button;
e () Validate—the tool of versions validation of metadata is started when choosing a menu item;

Besides, the dictionary €% of branches (Branches) is available in the “Administrator” tab of the main
menu.

© 2018 Ultimate 266

ULTRAATE

Developer SOLIn

Recompile of scripts

When major changes of metadata or services, as well as upgrading the kernel it is often required to
check whether the existing scripts are broken. For such check there are two commands:

= Regenerate and compile scripts —regeneration and compilation of all scripts;

= Recompile all scripts —recompilation of all scripts (without generation).

The first command regenerate all scripts, updating of the generated part of the script, resources and MEF
cache (see. script properties). After running this command there will be a lot of changes in the dictionary
that need to be recorded. The programmer will be considered as an author of these changes, who
executed the command Regenerate and recompile scripts.

The second command does not modify the scripts, but only checks that they are compiled. This
command does not cause any side effects and do not leave any traces in the system.

In the process of work the command for recompilation of scripts report all bugs via notifications:

o SendClientPasswordChangeRequestService, 11073 - ULTIMA, UTrade /yalie, demo@localhost:3133 Tools o @ =
= R
NewPage Viewmodes of commands Documents | Developer | administrator &
& compile ~ (5 Document commands (& Tasks EF Al scripts Documents [Table parts I[_J' | 03] Hot keys
_E‘ T} Reload ~ & User commands (g Printforms ¢4 Tests ~ [Dictionaries [7] Link tables | A - . [Languages -
ools B pps an
~ R commit Other commands - g Totals ~ % Services ~ dli Totals [E] Reporting - TestCommand... modules ~ <@ Misc tools
Branch: yalle @ 12875 Scripting Metadats Fast access Tools
/# DmitryTestCommandserCommand22113, 22115 X | [# SendClientPasswordChangeRequestService, 11073 # X X v | Noffications B ox
«[Scripts: 11073 [Z» [E+ = @ Checksource @ & = 2 Goto Current Element | -§ Get{SendCli... |~ | 7 0K Save Cancel Fiter &
:07 21.08.2016, Text notificatio -
Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only) “'j‘;‘;;i‘;;;g netfeston
= : £, Seri
38 if (agents.Count == 1) 2 £ Line 32: "Ultima.ISmsService. Send(string, string)”
EL] { i outdated : "Use SendMessage method instead.”
48 var agent = agents.First();
a1 7
#
42 // create hash &
43 var hash = WebService.GetRandomString(128); _ _ .
a4 21:07 21.08.2016, Text nofification L
- ’ an . B .) Script 55528
j? LogManager.GetLogger().Info(@"hash: {8} / {1}", hash, agent.ID); L bty o (DT oD ST TTISEeE S
° "RootCanstantGroup™
a7 var body = new StringBuilder();
438 body.AppendLine(HelloCaption); .
49 body.Append(LinkToPasswordRecovery);)
sa body.AppendFormat("http://.../?h={@}", hash);
51 body.AppendLine(); 21:07 21.08.2015, Text notification
52 (@ Script 54560
53 WebService.RedisSetvalue("PasswordRestore” + hash, agent.ID, DateTir Line 39: syntax error, expected “while”
e Line 33: syntax error, expected "(
55 EmailService.SendMail(request.Email, request.Email, PasswordReset, | .
56 L 7 @
57 return new SendClientPasswordChangeRequestResponse {Success = true}
;i ! 21:06 21.08, 2018, Text notification
- .) Script 7387
60 return new SendClientPasswordChangeRequestResponse {Success = false}; & [ine 0: Faled to find metedata fie
61 } "D \ProjectsMext\Distrib\AppServer ThirdParty /De. .
62 T Line 0: Faied to find metedata fie
< IR > V i
Errors || Properties | | Find al || Branch history || changes history | 21:06 21.08.2015, Text noffication E
Windows ™ | A 8

Notifications are sent in the course of command execution in real time to correct errors without waiting
for the end of command execution. An action key button (¥) allows opening a script on that line where
the compilation error is found in each notice.

Commitment of changes to current version

|| Only the current version with the application server running can
be committed. Editable versions with the committable changes are e

always located on the ends of branches. If the application server is & comple [Dictionary commands
running on a read-only branch, a commitment of current version will || " gy5000d 5 Document commands
fail, and the command will be blocked. The current branch's name is Took [® commit | [Ustcommands -~
displayed in the tab "Developer" within the name of a tools group of the Eoret s

version control system.

‘ ‘ [B# commit changes to the current version

© 2018 Ultimate 267

Developer

ULTRAATE

SOLID

A form for commitment of changes consists of three parts. The area above is designed forinput:

e /ssue identity — ID of a tracker request, within the scope of which the
committed changes were made (optional parameter). The ID may include
digits, letters and special symbols and must match the request ID in the
tracker URL; if so, the request can be opened in the tracker from a
metadata object.

[PD Commit changes to the current versic

Issue identity: |ubw-719|

Enter comments:
#ubw-719

When being entered, the request ID is automatically added to the comment field: if the comment
field is empty, the ID is put at the start of the field; otherwise, it goes to the end of the field.
All objects with the changes being committed will be marked as changed within the request scope. If
changes made within the scope of two or more requests are being committed, there will be no way to
correctly mark them with different IDs. Therefore, before proceeding to the next request, it is
recommended to commit changes of the previous one.

e /ssue tracker — tracker, in the request scope of which the changes were

made. A tracker should be specified, if a request ID Issue identity has been minor fix E&
entered. The tracker that was selected during the latter commitment is changed some default forms
entered into the field automatically; added some report views

e Recent Comments — by clicking the button one can select a recent comment Minor fix
entered by a user to the Enter comments field. Clear history clears the Clear history

comments history;

e Enter comments —description of changes made to metadata; the field is mandatory.

The Changed objects summary area contains a list of metadata objects at the bottom, which were
subject to changes. On the left, the changed objects are specified; on the right, the properties of the
objects selected to the left are specified with detailed information on changes. The header of this area

also contains the name of the current branch (Branch name):

[P? Commit changes te the current version = =R
Issue identity: Issue tracker: |UltimaBusinessWare Tracker (http:fftracker.ultimabusinessware. com fissue /{Issueld}) - Recent comments |~
Enter comments:

Changed objects summary. Current version: 1187, Branch name: temp
Object name Object type Object identity | Operation Description 4 | | Property name Old value New value -
» test Document type 2011 Object identity 1449 1449 L
> DictionaryListCommand1715 Script 1716 # Modified Modified script: DictionaryListCommand171 Caption Send a testmess... Send a testmess... |~
> Agents Dictionary 1592 4" Modified Modified dictionary: Agents = Guid 547de153-bb10-... 547de153-bb10-...
iSend a test message to a curr.., ;User command 1449 & Modified Modified user command: Send a test messa Script identity 1450 1450
SendTestMessageToCurrentlser Script 1450 & Modified Modified script: SendTestMessageToCurrer Script group identity 5 5
v test Client application 2577 @ Deleted Deleted dient application: test Parameters mode identity i 2
Test Client application modules 2580 & Deleted Deleted dient application modules: Test Parameters form 61A32313-4DA6-.. 61A32313-4DAG-...
AnentProdurtsFyentHandler Serint 2513 Created Created serint: AnentProductsFuentHandle ¥ | | Dev. comments This's a testcom... This's a testcom... ¥
Compile metadata before committing changes (may take a while) Rollback Cancel

In the list of the metadata changed, the objects are grouped
according to their assignment: dictionary properties are
enclosed into the dictionary, document subtypes into the
document type, etc. Double-click a metadata object will allow
proceeding to edit the object.

The list of objects changed contains the following information:
e Object name —metadata object name subjected to changes;
e Object type —metadata object type;

e Object identity —metadata object ID.

Cbject name
~ Goods
» test
> testlD

e Operation —operation that the metadata object was subjected to:

Created —object created,;
= Deleted —object deleted,;
& Modified —object modified;

Ohject type

Dictionary

Dictionary to one reference
Dictionary property

© 2018 Ultimate

268

ULTRAATE

Developer SOLIn

= the operation may be missing if the metadata object was not modified directly, but the child object
linked to it was modified:

Object name Object type Objectidentity |Operation
~ Order Tablepart type 1980
TestTablePartProperty Table part to-onereference 2445 O Deleted

e Description —description of the change.

right-click on the object in the list of the metadata changed | changed objects summary. Current version: 1187, Branch name: temp

will open a context menu allowing to cancel the changes | |ob

made (operation will be executed upon selection of the vi

menu option):

e Reject changes to this object — cancel changes only for the
object selected ;

e Reject changes to this object and its children — cancel changes for the object selected and its children
objects.

Object type

Dictionary
Agents I} Reject changes to this ohject
Reject changes to this object and its children

Description of the metadata objects selected contains a list of all properties of the objects and their
values before and after the change. Values different from each other will be highlighted in green:

e Property name —name of property of a metadata object that was subjected to changes;

e Old value — property value before the change;

e New value —property value after the change.

Checking the flag Compile metadata in the left bottom part of the form will allow compiling the
metadata before their commitment. The compilation of metadata may require extra time. If what is
being committed is an intermediate version not intended to be provided to end users to work with,
there is no need to compile the metadata.

== Click the Rollback button cancels all the changes made to the version. Upon click on the button, the
changes will be rejected and the form for changes commitment closed. The metadata version will not be
committed in this case.

==l The Commit button, which is used to commit changes, becomes available on entering the comment
into the Enter comments field.

After the changes of the current version have been committed, a new version of metadata will be
created, and the branch-tag of the current version will be automatically transferred to it. All changes
made to metadata after the commitment operation, will be put into this new version.

If no changes were made to the metadata version being committed, a warning will be shown: "No
objects were changed". In the process, only binary files of the version can be committed; before this,
compile the metadata (check the flag Compile metadata before committing changes):

[M# Commit changes to the current version = B

Issue identity: Issue tracker: |UltimaBusinessWare Tracker (http://tracker. ultimabusinessware. com/fissue /{Issueld}) - Recent comments |~

Enter comments:

Changed objects summary. Current version: 10989, Branch name: msapaev.

Mo objects were changed.

To commit metadata binaries, chedk
the «Compile metadata» box below.

Compile metadata before committing changes (may take a while) Cancel

© 2018 Ultimate 269

Developer
Merging of versions

& @

ULTRAATE

SOLID

B Initially, the metadata versions tree of Ultimate AEGIS® system has a single branch marked with
the branch-tag Default. The mechanism of versions merge is relevant in those cases when the tree of
versions has several branches. Such situation is typical for a company with the staff number of more

than one application developer. In this case, every developer ¢
branch marked with its own branch-tag, and the mechanism of

onducts the development in his own
versions merge is used for loading of

changes from the main branch Default or pushing one's own changes into it.

The functionality of the versions merge form allows comparing metadata selected by branch-tag of the
branch with the branch Default (or any other branch, if needed) and loading all changes, made after their

forking (or after the last merge), into one of them:

35 Merge changes

| Default branch i

o P)
Destination branch: Changesets (2) | Differences (3) | Canflicts
3 - |- yallie > Changeset | Commit date Comments C... | Creator login
& Pull from Defalt | + 12771 10252015 7:05PM Minor bugfixes. .. 7 yallie
12756 10/23/2015 5:42PM Checkin 7 vyallie

Comment:
Pulled from Default,

Develepment

joss

rup

Select another branch...
......... Property name
Identity

MName

Description

Created #54558
Created #54560
Created #54559

Compile metadata on merge;
O Auto

Remaove all unused items
|

Always Mever
References
Seript text

Generated text

2% Merge changes Cancel
Generator data
Language-neutral resource

Developer's comments -

Destination branch — a branch-tag of configuration branch, into which the changes are pulled in from
the Default branch (the header is changed to Source branch if the changes are not pulled in the

selected branch but pushed from it into Default branch);

Pull from Default —upon a click on the button, the changes will
be loaded from the branch marked with Default tag, into
selected branch. The information about the loading process is
displayed in the pop-up window;

Push to Default—upon a click on the button, the changes will be
loaded from the selected branch into the branch marked with

L) Loading

Examining head versions of each branch.
Determining last merge points.

Getting list of intermediate versions.
Getting list of versions merged back.
Loading version comments.

Loading operations.

Loading changed objects on bath branches.

Default tag. The information about the loading process is

displayed in the pop-up window;

Comment — a comment, which the committed version will be marked with. When clicked on the

button Pull from Default or Push to Default, a comment, which can be changed, will be inserted

corresponding to selected action. The merge operation will not be performed if the comment has not

been entered;

Compile metadata before committing changes —a flag indicating the need in compilation of metadata

before their commitment.

= Auto — if checked, necessity to compile metadata is determined automatically. In this case,
compilation is launched when changes are pushed into Default branch, if there are metadata or
interfaces (incl. mobile interfaces) among the objects being loaded. In the process, the version
containing no changes in metadata is not being compiled, but considered compiled. This allows
loading changes in scripts without forcing the metadata collection to be reloaded;

= Always —if checked, the metadata compilation process is always launched;

© 2018 Ultimate

270

ULTRAATE

Developer SOLIn

= Never—if checked, the metadata compilation process is never launched,;
Metadata compilation may require additional time. When changes are pushed into Default branch, it is
recommended, if needed, to compile metadata (to check the flag Auto);
e Merge changes — upon a click on the button, the merge
operation is carried out, and then the operation for branch | () Saving..
version commitment, into which the changes are pulled in. The : :
. Getting the affected root objects. A
merge operation will not be carried out in case of conflicts not | | validating 47 metadata objects.

Validating dictionaries.

marked as resolved (Resolved). The information about the | |checkng for duplicate member names.

. Checking for unigue columns.
process of merge operation execution is displayed in the pop- | | checkng for dupicate link tables.
. Checking for duplicate nested dictionaries.
up window;

4

e Cancel—aclick on the button closes the versions merge form;
e the information about loaded changes is grouped by tabs "Comments", "Changes" and "Conflicts".

M in the tab "Changesets", a list is given for all commits, from which the changes were loaded; a
number of commits is indicated in the parentheses:

e Changeset —number of commit;

e Commit date —date of commit;

e Comments —comments entered during version commitment;

e User identity —ID of the user that committed this version;

e Creator login —name of user, who committed the version.

M in the tab "Differences", a list of changes is given, which were loaded, a number of changes is
indicated in the parenthesis. The list consists of two parts: on the left, the metadata objects are
specified, which were subject to changes; on the right, the properties of the objects selected on the left
are specified with detailed information about changes. Implementation of the list of changes and its
functionality are similar to the changes in the changes commitment form:

Comments (55) | Changes (339) | Conflicts (1)

4

Object name Object type Object identity Operation Description
~ Artid

Property name 0Old value New value

Dictionary 2945 Identity 3177 3177

Dictionary to one reference 3177 & Modified Modified dictionary to one reference: Measur... System name i Unit
Metadata caption translation 3213 & Modified Modified metadata caption translation: Meas. .. Localized name: Mesure unit HMeasurement unit

Measurement unit

* Prices Dictionary linktable 5976 Created Created dictionary linktable: Prices Developer's comments
> ExtraCharges Dictionary linktable 5977 () Created Created dictionary linktable: ExtraCharges Dictionary 1D 2945 2945
v Store Dictianary 3637 & Modified Modified dictionary: Store Property ID 3187 3187
Mame Dictionary property 3639 & Modified Modified dictionary property: Mame w | |Referenced dictionary ID 5186 5188

M in the tab "Conflicts", a list is given for all conflicts arisen, which the system is not able to resolve
automatically. A number of conflicts is indicated in the parenthesis:

Comments (55) | Changes (339) = Conflicts (1)

Object type | Objectidentity |Destination operation |Source operation |Merged operation |Resolved | | Property name Destination Source Merged

Objes
i Saript type 22 4 Modified & Modified 4 Modified Description Service handler script Service handler script Service handler script

Template using System; using System; Source: using System;
Generated text template using System; using System; Source: using System; =
References Zyan.Communication.dll Source: Zyan.Communic...
Script group identity 7 7 7 -

Resolve all conflicts: using source version using destination version Resolve the conflict: source version destination version

The conflicts are overlapping and at the same time different changes of one and the same objects in the

merged versions, e.g.:

e editing of metadata objects in one of the merged versions and its deletion in another;

e the editions of metadata objects differing from each other, e.g. script code;

e creation of metadata object of one and the same type, e.g. user command, with similar name but
different properties/parameters.

The conflict will not be represented for instance with:

e creation of new children objects of metadata, with a different name, for one and the same object, e.g.
properties for the dictionary (document type, etc.). Both properties will be available in the version
produced as a result of merge;

e deletion of one and the same object of metadata.

© 2018 Ultimate 271

ULTRAATE

Developer SOLIn

¢ identical change of the object on both branches. e. g., renaming a dictionary field.

A conflict arisen in case of changes overlapping should be resolved. It can be made only manually. In
case of different operations for the object (the object is deleted in one version, and edited in another) —
this is selection of actual operation. In case of different editions of one and the same object, when they
are actual — this is selection of one edition (e.g. the most complicated and labour intensive), and
subsequent manual introduction of ignored edition after merging. Conflicting script text can be merged
using an external conflict resolution tool to get the combined script containing up-to-date changes from
the both branches.

The permissions tab is divided into two parts: on the left, the metadata objects are specified, which
changes in the merged versions overlap between each other; on the right, detailed description is
provided for overlapping changes of the objects selected on the left.

The list of metadata objects, which changes are in conflict between each other, contain the following

information:

e Object name — metadata object name. Names are grouped according to their assignment: dictionary
properties are enclosed into the dictionary, the document subtypes are enclosed into the document
type, etc,;

e Object type —metadata object type;

e Object identity —metadata object ID.

e Destination operation — an operation, which the metadata object is subject to in the version, where
the changes were loaded from (it is marked with the tag selected in Destination element):

Created —the object was created,;
Deleted —the object was deleted,;
#” Modified —the object was modified;
= the operation may be missing if the metadata object was not modified directly but the child object
linked to it was modified;

e Source operation — an operation, which the metadata object is subject to in the version, which the
changes are loaded into (it is marked with the tag selected in the Source element);

e Merged operation —one of two operations Destination operation or Source operation, which falls into
the merged version. In the list being opened upon a click of the left mouse button on the operation,
an operation of which version can be selected for leaving as a result of merging:

Object name Object type Objectidentity |Destination operation|Source operation | Merged operation | Resolved
w MewTestDict Dictionary 1816
w TextProp Dictionary property 1829 4" Modified Deleted Deleted | =i
Text property Metadata caption translation 1831 " Modified Deleted | Deleted
SendTestMessageToCurrentser Script 1450 & Modified & Modified & Modified

Resolve all conflicts: using source version using destination version
e Resolved — a flag, which the resolved conflicts are marked with. If at least one conflict is not marked
with this flag, the merge operation will fail;
e Resolve all conflicts — the links allowing performing selection of all conflicting operations, which will
fall into the merged version:
= using source version — the conflicting changes from the version, marked with the tag selected in
Source element, will fall in the merged version;
= ysing destination version —the conflicting changes from the version, marked with the tag selected in
Destinationelement, will fall in the merged version.
When clicked on any of the link, all conflicts will be marked with Resolved flag as resolved.

Detailed description of overlapping changes of selected metadata objects contain a list of all properties
of the objects and their values in merged ones as well as in the resulting version. The changes, different
from each other, will be highlighted orange pale:

e Property name —a property name, which was subject to changes of metadata object;

e Destination —value of the property in the version, marked with the tag selected in the From element;

© 2018 Ultimate 272

Developer

ULTRAATE

SOLID

e Source —value of the property in the version, marked with the tag selected in the To element;
e Merged —one of two changes, which falls into the merged version. Its value is preceded with the text

«Source:» or «Destination:» whichever is selected. In the list being opened upon a click of the left
mouse button on the change, a value of which versions can be selected for leaving as a result of
merging:

Property name Destination Source Merged e
Description Service handler script Service handler script Service handler script

Template using System; using System; EDestinat’on: usingS.,, | ™
Generated text template using System; using System; Mame Ié
References Zyan.Communication.dll |Source: using System;

Script group identity 7 7 Destination: using System;
Resolve the conflict: source version destination version x

The conflicting text values of changed properties can be compared in a separate form opened by
clicking |=**|:

Property name Destination Source Merged -

Description Service handler script Service handler script Service handler script
Template using System; using System; Destination: using Syst...
Generated text template using System; using System; EDesﬁnation: using 5... | T =
References Zyan.Communication.dll |MName Ié |
Script aroup identity 7 7 Source: using System;
1
v
onflict for GeneratedTemplate (destination vs. source) o [BOER
] = ¥ = 1‘_'!*_} —||~| 4| Lnl, Coll
I 07 lusing Ultima.Metadata; 4 |07 lusing Ultima.Metadata; s
08 lusing Ultima.Server.Data; 08 lusing Zyan.Communication.Composition;
05 05
10 namespace Ultima.Secripting 10 namespace Ultima.Secripting
11 |4 11 |4
[Export (typeof (§GeneratorData))] 1z [ZyanComponent (cypeof ($GeneratorDate
12 public partial class SName : $Generg ||13 public partial class SName : $Generg
14 { 14 { 3
15 |$Rezources is }
16
17|} v |18} o
4 1 3] 1 3
12 |- - - -[Export (typeof ($GeneratorData))]
12 (» [ZvanComponent (typeof (SGeneratorData))]

In the left part of the form for comparison of the texts of conflicting properties, a value is provided for

destination property (version, marked with the tag selected in Destination element); in the right part

of the form —a value for source property is provided (version, marked with the tag selected in Source

element). Comparison of the texts is carried out in such a way as if the text source was produced by

changing of the text destination:

= green marks the changed text;

= pink marks the deleted text;

= blue marks the added text.

In the lower part of the form, both versions of the row, on which a cursor is set, are provided for

comparison;

Resolve all conflicts —the links allowing performing selection of all values of conflicting changes, which

will fall into the merged version:

= source version —the values of conflicting changes from the version marked with the tag selected in
Source element will fall into the merged version;

= destination version — the values of conflicting changes from the version marked with the tag
selected in Destination element will fall into the merged version.

© 2018 Ultimate

273

ULTRAATE

Developer SOLIn

N After completion of merge operation, the metadata are checked for errors. After being found, such
errors are displayed on tab "Validation Errors". A number of errors is indicated in the parenthesis:

Comments | Changes | Conflicts | Validation Errors

Cbject ID Mame Message -
2011 test Duplicate property name: test =
1604 AgentsEventHandler Duplicate script name: AgentsEventHandler
1518 AgentsEventHandler Duplicate script name: AgentsEventHandler
1694 AgentsEwventHandler Duplicate script name: AgentsEventHandler
1697 AgentsEventHandler Duplicate script name: AgentsEventHandler -

The metadata version containing validation error cannot be compiled. Correspondingly, if during
merging a flag of metadata compilation Compile metadata before committing changes was set, the
merge will not be completed. The validation errors as well as the conflicts will have to be corrected
manually too.

The list of validation errors contains the following information:

Object ID —object ID;
Name —a name of the object, which checking detected an error;
Object Type —object type;

e Message —error message text.

By double click on the object it can be opened for editing. Validation is described also in the section
Metadata error check.

2]

Let us consider a sequence of actions for the most common situations of versions merge, when

the developer requires pushing the changes made from own branch into the Default branch:

1. Atfirst, the changes made to the last version of own branch should be committed. Firstly,
the non-committed changes cannot be pushed into another branch. The merge will be
executed only for previous-last committed version in the branch. Secondly, the changes
from the other branch cannot be pulled into non-committed version.

2. After that the changes should be pulled in from the Default branch. It should be made
because the changes could be already made by other application developer into Default
branch after the last pushing of changes from current branch:
= if pushing at first the changes of own version into the Default branch, resolution of

potentially possible conflicts will fail, since it can be made only in the current version,
which the application server is started from;
= these updates will be necessary in any case since conducting collective development is
simplerin relatively up-to-date version of metadata.
If a warning appears that the non-committed changes are present in Default branch — the
situation is unlikely but possible — they should be committed at first. After that the conflicts
should be resolved and the pulled in changes with metadata of own branch should be
merged. Moreover, the metadata version, which the changes were pulled into, are
committed. Now the metadata of current branch differ from the metadata of Default branch
only with the changes made by the application developer.

3. And finally, the changes from own branch into Default branch should be pushed through. If
the other application developer has not managed to push there own changes after the
loading at stage 2 of changes to Default branch — no conflicts will be present (if they
managed to do it, the actions of the second stage will have to be repeated). Only merging
will remain to complete the operation. In the process, the metadata version, to which the
changes were pushed, are committed.

Thus, in order to push the changes from own branch to Default branch, performance of two
subsequent merge operations is required.

© 2018 Ultimate 274

ULTRAATE

Developer SOLIn

Script text conflict resolution

Merge conflicts are normally resolved by choosing one of the available versions. But merging scripts is
more challenging. Consider a script modified by two developers on their own branches: the first
developer adds a new method to the script, and the second developer writes another method, perhaps
in a different part of the text. One cannot select either version as a merge result: both added methods
need to be present in the resulting script text.

This important specific case of the conflict resolution requires a dedicated tool (we currently use
external TortoiseMerge, a widely used free diff/merge utility). To resolve the text conflict using the
external conflict resolution tool select the conflicting text field and click the «Merge using external
tool» button:

%3 Merge changes o B

Source branch: Changesets (1) | Differences | Confiicts (1)

5 ™ |-e || yallie x Object name Object type oo |Beve | ee | vr | won | | Property name Destination Source Merged
s ol 2 Push i v Yalie's Test Command User command Identity 6696 6696 6696
O M Foe e TR R TestCommandByYalie Script P PP Name TestCommandByYalie TestCommandByYalie TestCommandsy¥alic
References {ServerFolderName}... {ServerFolderName}... {ServerFolderMName}...
Script text using System; using System;

Comment: Generated text using System; using System;

Pushed to GLOBALULTIMA, Generator data

Language-neutral resources <?xml version="1.0".. <?xml version="1.0".. ©

Developer's comments

Cached catalog data for MEF new ExportedRegi.. new ExportedRegi... Source: new EXpor...
Compile metadata on merge: Script type identity % % £

Script group identity 4% % 4%

Auto () Aways () Never
Parent object identity 6695 6695 6695

85 Merge changes Cancel

Resolve all confiicts: sing source version sing destination version Resolve the confict: source version destination version

The system saves the conflicting script versions as temporary files on the local disk and launches an
external merge tool. The merge tool displays three versions of the text: the upper left panel shows the
first developer's version, the upper right panel has the second developer's one, and the lower panel
displays the combined version, which is editable. This version merges changes made by both
developers. The conflicting lines are highlighted in red. To complete the merge one needs to make sure
that the combined version of the text has no conflicts highlighted in red. In the simplest case (if the
lines changed by both developers are located in the different parts of the file and don't overlap) the
merge tool is able to resolve the conflict automatically once all files are loaded. In that case the result
can be saved as is, with no changes at all:

© 2018 Ultimate 275

Developer

ULTRAATE

SOLID

| Main style ~ @ €
¥ Open @ Reload Copy ‘ > & Mext conflict 1" —=—.|Wrap long lines L l:l
u Save Unda Paste ’ . Previous inline difference Inline diff |§| =
Create Previous MNext Previous Show
H Save as » Use Blocks = J patch file || difference difference conflict Mext inline difference Whitespaces Inline diff word-wise | 3§ ==
Files Edit Mavigate View [F}
Theirs - theirs.txt | ~ Mine - mine.txt | ~
1184 ~-ssasmma s throw-new-UltimaException ("The-operatic 1184 «--sammaa throw-new-UltimaException ("The-operatic
1185 ---=--- pese 1185 ---=-=-- pesd
1186 ----}< 1186 ----}<
1187 < 1187 <
1188 ----public-static-class-QuervExts< = ----public-static-class-QueryExtsd
+1133 =ssspublic-static-class =Que1yExtensions<J
1189 ----{< 1189 - ---{<
1190 ---a-- f/-https://stackoverflow.com/gquestions/163¢ 1190 =--a=-- S =https://stackoverflow.com/questions/163¢
1191 ----a--- f/-http://tracker.ultimaerp.con/guestion/vi 1191 ------ S =http://tracker.ultimaerp.com/guestion,/vi
1L R puklic-static-IQueryakble<T>-DynamicContain: G2 - - - - - - puklic-static-IQueryable<T>-DynamicContains
this-IQueryable<T>-query, -l 1193 -~ mmaaas this-IQueryable<T>-query, -l
string-property, -l -string-property, -l
IEnu.merahle(TPererty)-.i.t.ems](J IEnu.merable(TPererty)-items](J
var -pe-=-Expression.Parameter (typeocf (T) var-pe-=-Expression.Parameter (typeof (T)
wvar -me-=-Expression.Property (pe, -prope: wvar-me-=-Expression.Property(pe, -prope:
war.me.=.Fynreceion Canarant firemal .o ¥ war.me.=.Fynraceian Canerant (§ramal - .o
£ > £ >
Merged - merged.txt L
1184 ~-ssasmma s throw-new-UltimaException ("The -operation-wasn't -canceled-by -user.") ;<
1185 -------- pese
1186 ----}<
1187 <
— ----public-static-class-QueryExts<
+1133 ----public-static-class -Que:cyExtensions(J
1189 ----{<
13804-------- //-https://stackoverflow.com/questions/1634779%4/how-to-build-an-ienumerableint-contains-expressiond
1191 ---- -//-nttp://tracker.ultimaerp.com/question/view?id=292507
1L R public-static-IQueryable<T>-DynamicContains<T, -TProperty> (<
1153 this-IQueryable<T>-query, -<
1194 string-property, -l
IEnu.merahle(TProperr.y>-items](J
var -pe-=-Expression.Parameter (typeof (T), -"x") ;<
var -me -=-Expression.Property (pe, -property) s
AT arm.=.Fynreaainn Canstant (§itemal - - e
- £ >
For Help, press F1, Scroll horizontally with Ctrl-Scrollwheel Left View: UTF-8 CRLF Right View: UTF-8 CRLF /-1/+1 Conflicts: 0 CAP

When the merged file is saved, the external tool is closed, and the temporary files are cleaned up. The
merge result is added to the conflict resolution form. The drop-down list for the given text field now has

a Merged item corresponding to the combined version of the script:

22 Merge changes

Changesets (1) | Differences | Confiicts (1)

Source branch:

5 ™ |- yalie x Object name Object type vee|Devs | ee | vur | wn | | Property name Destination Source Merged

Pushed to GLOBALULTIMA. Generator data
Language-neutral resources
Developer's comments
Cached catalog data for MEF
Seript type identity
Saript group identity
Parent object identity

Source: using System;
<?xml vers Destination: using System;
Merged: using System;

«2xml version="1.0"..

new ExportedRegi.. new Expa
2% %

4% %

6695 6695

Compile metadata on merge:

@ Auto () Always () Never

2% Merge changes Cancel

Resolve all conflicts: using source version using version destination version

Resolve the confiict:

source version

TR T W ~ Yallie's Test Command User command Identity 6636) 6696) 6696
S TestCommandByYalie Script P PP Name TestCommandByYalie TestCommandByYalie TestCommandByYalie
References {ServerFolderName}... {ServerFolderName}...
Saript text using System; using System; Source: Us... | =
Comment: Generated text using System; using Syste Mame

All left to do is to set the Resolved checkbox that marks the selected conflict as resolved,
combined script version can be uploaded to the destination branch.

and the

© 2018 Ultimate

276

ULTRAATE

Developer SOLIn

Version history

=3
E The form of version history allows looking at all branch of versions to the first node for the
selected branch-tag or version branch to the first node starting with the version marked with a normal
tag.

By default when the form opening history of a current version is shown:

Metadata versions o B R
Filter |Branch: msapaev, last 1000 versions - Show log
Version identity | Commit date Comment Motbuilt |Tags Branches |« | | Anaped 18.03.2015 03:43: -
=] Pushed to Default, =
10989 msapaey -
: Newa 18.03.2015 03:36:
10988 3/18/2015 10:47 AM Pulled from Default. pushed to Default.
[; 10832 3(18/2015 10:42 AM Pushed to Default,
Tewa 18.03.2015 03:26:
10881 3/13/20159:51AM Pulled from Default. Testing new logging features, Subw-239.
10830 3f13/20159:48 AM Pushed to Default. v v '
Object name Object type Objectidentity |Operation | Description 4 | | Property name Old value New value -
~ StoreClaim Document type 33045 =|| | Identity 6696 6636 L
~ Request Document subtype 38118 Name TestCommandByYallie TestCommandByYallie
Supplementary sheet (Russian) Print forms of document... 46641 () Created Created print forms of document s.., References {ServerFolderName}\ThirdP... {ServerFelderName}{ThirdP...
» Processed Document subtype 38119 Script text using System; using System;
StoreClaimDocumentEventHandler Script 44159 & Modified Modified script: StoreClaimDocume... Generated text using System; using System;
»_FrontOfficeNenartment Narment Inakun nrnnerh: 46A0 4 rested Created document lnnkun neanerte | | Generator data ™

The history form is divided into four parts:

e at the upper left alist of branch versions marked by the selected tag is located,;

e at the upper right —an user name, date of changes fixing and comment entered when changes fixing
for the version selected at the left;

e at the lower left —a list of metadata objects undergone changes in the version selected at the upper
right (it is similar to the list of changes in the form of changes fixing);

e at the lower right — a property list of metadata objects selected at the lower left with detailed
information on changes (it is also similar to the property list in the form of changes fixing).

Branch history contains the following information:

e Private — aflag meaning that this set of changes will be passed in case of synchronization with other
branches.

Changeset —number of a change set.

Creator — change author.

Committed — date of a change set fixing;

Comments —a comment entered during version commitment; Unrecorded version has a comment

e Source branch —a source branch on which this set of changes appeared at the first time.

In the form of history viewing possibility of additional filtering is realized:

Metadata versions o B R
Filter |Branch: msapaev, last 1000 versions Ié ¥ Show log
Vel Branchortag |44 |-+ |\ msapaev: #11141 Fa
»
Issue identity X
Object - e x
Show only this object operations
User ol B X
Period s ~ Limit 1000 -
x

10817 2/11/9015 10023 M chanaed same default farme

In addition to Branch metadata the following parameters filtering is available:

e /ssue identity —arequest identifierin a tracker if it was entered when changes fixing;

e Object — metadata object;

e Show only this object operations — the set flag allows showing in the list of the changed metadata
objects at the lower left only changes of the selected Object;

© 2018 Ultimate 277

Developer

e User—the user login making the changes;
e Period —time slot when fixing was made;

ULTRAATE

SOLID

e Limit—number of removed records (change sets).

For use of the filter click Show log to the right of it. The selected Branch and record Limit are
remembered and automatically applied in case of the following opening of the history form.

Creation of new metadata branches

The form of history viewing allows creating new branches by cloning of already existing. For this

purpose:

1. Inthe history form to remove a branch history which should be cloned (usually it is Default branch).
For this purpose select the appropriate branch from the filter.

2. Selectrevision from which create a new branch. Not all versions approach, it is connected to features
of the internal version organization.

3. Inthe shortcut menu select the Create branch from selected revision command, or by means of the
button * which appears in case of click in the Source branch field in a line of that revision which
shall become the beginning of a new branch:

Metadata revisions

x

Filter |Branch: Default, last 10000 revisions

Private Changeset
12754

12751

12750

b W 12765
12756

12752

12749

12748

12745

12744

W 12745
12743

12742

12741

12740

12739

Creator
yallie
vallie
yallie
yallie
yallie
vallie
yallie
root
yallie
vallie
yallie
yallie
vallie
yallie
yallie

yallie

Committed

10/14/2015 ...
10/14/2015 ..
10/9/2015 4...

10/23/2015 ... |

10232015 ...
10/16/2015 ..,
10/14/2015 ...
10/1/2015 2...
9/24/2015 1.,
9/24/2015 1.,
9/24/2015 1...
9/24/2015 1...
9/23/2015 4.,
9/7/2015 5:...
9/2/2015 ...
9/2/2015 ...

Comments
Resolved conflicts,
Miscellaneous changes.

Added a test print form.

C

pp=b-di- maLo s

Create a branch from selected revision

D & Refresh revision history

Deleted a test command.

Version upgrade: v5.2.0.1. Removed orphan scripts, #ubw-15...

Test commit.

Deleted bank event handler,

Pushed to Default.

Added a test script.

Test commit.

Updated the shoe shiner virtual total report.
Test commit #2.

Test commit.

Source branch
allie o

Default

Default
Default
Default
Default
Default

allie il

4. When the shortcut menu command selecting or by clicking | * name for a new metadata branch is

requested:

Branches —

1}
I
I
v

Branches —

Mew branch

Branch name
_» |

Ok

Cancel

Process can take several minutes if the considerable history is saved up. After creation of the branch
start an application server on a new branch.

© 2018 Ultimate

278

ULTRAATE

Developer SOLIn

Metadata error check

O The check of metadata of the current version on errors is carried out by clicking the key button &
Validate. The found errors are displayed in the form Validation results. Top-level objects, such as
dictionaries, types of documents and scripts, are opened by double-click to correct validation errors at
once:

o Validation results = B0
Mame « | ObjectID | Object Type Message
w Agent Dictionary e
VATApplicable 55933 DictionaryProperty Mo translation for VATApplicable =

Display list of documents 55783 DocumentlistCommand Mo translation for Display list of documents
Releaze14 55628 DocumentType Mo translation for Release14
Release14 55692 TablePartType Mo translation for Release14
Release14 55742 Constant Mo translation for Release 14
Releaze14 55618 Dictionary Mo translation for Release14
Release14d 55750 Dictionary Mo translation for Release14d

» Releasel4dlink 55764 LinkTable Mo translation for Release 14dLink

» Releaseide 55812 DocumentType Mo translation for Release14e A

Among other things, the validation tool checks the existence of translations for the names of metadata
objects and strings in scripts.

To correct errors of validation of strings in scripts it is necessary to do the following:

e if this message for the user — to replace it by resources and to translate into all languages of the
system (by defaultitis two languages — Russian and English);

e ifitis SQLinquiry —it has to begin with operators in an upper case of SELECT, DELETE, UPDATE, INSERT;

e if the situation does not fall under any of the above - to mark the string by the symbol @, in this case it
will be passed by the validator without errors:
string someSql = @"delete from TABLENAME";

Versions tags

ﬂ b Itis possible to view the metadata branches in the dictionary Branches:

|=| Metadata branches = = iz
-] & Q| B - 3 [E] | Max rows: | 10000 5| & =~
Identity Creator.Login Is draft Is read only
¥ root .
2 Development root =
3 Test root
4 Production root v
5 yalie yallie
6 temp root -

Dictionary records can be filtered according to the Name of the branch (Name).

© 2018 Ultimate 279

ULTRAATE

Developer SOLIn

The tags have the following properties:

[# Metadata branches, 1 = B B
| Metadata branches: 1 il nofiles = en £ o oK Save Cancel
MName Default Creator ID 1 = -« || root (Administrator) | £
Language identity |1 w |- ||en £ Creation date 7f22{2015 - || 1:51:56 PM
Is draft First changesetID | 12400 | = ---|| 12400: Version ... |#£
| Iz compiled Changeset ID 12846 | = ==+ || 12846: £
Iz read only

e Name—branch name;

e Language — metadata main language;

e Creator — branch creator;

e Creation date — creation date of a branch (service field);

e First changeset — first commit from which the branch begins (service field) ;

e Changeset — the last commit with which the branch comes to an end (service field);

e /s draft — aflag, indicating that the branch is a draft (changes from it can not be pushed to the branch
Default);

e /s compiled — aflag, indicating, that the metadata binaries are relevant (service field);
e /sread only — aflag, indicating that the branch is available only for reading.

For the existing branches it is possible to change the name and the owner, and status flags as well.
Service fields are not recommended to be touched.

Creation of new metadata branches

It is possible to create new metadata branches only by cloning of the existing branches (it will be
offered to choose a branch for cloning by the New key button). Among versioned data there are service
records (types of scripts, system dictionaries, etc.), platforms required for the correct operation, so the
creation of completely empty branches are not supported. When cloning the branches there is a copying
of all versioned data from the original branch, so the cloning can take a long time:

|=| Metadata branches = = iz
-] & Q| B - 3 [E] | Max rows: | 10000 5| & =~
Identity | Name Creator.Login Is draft Is read only
b 1 iDefault - : .
2 o] ¢
3 Test Gl Delete
4 Producti |@> Clone branch 7
5 yalie Clone
6 temp Select rows -
Select cells

In the branches dictionary the cloning always makes a copy of the last (current) metadata commit
revision on the selected branch. If the metadata on an original branch are not fixed, the cloning is
impossible. If for cloning it is necessary to choose older revision of metadata, it is necessary to use a
form of history of versions changes of metadata.

© 2018 Ultimate 280

ULTRAATE

Developer SOLIn

Predicates

&=
\Lg‘f-' Predicates are applied to object for the purpose to restrict access to it. The list of all predicates can
be found in the dictionary Predicate:

'T% Predicate o =i
e F & Q & < Filters i@
jin] Mame Sql Expression CObject name Object type name
i Show only suppliers in dictionary ‘Agents’ ID<2 Agents Dictionary
3 Show only verified documents Income DocumentType

Predicative access is supported for the following objects of metadata:
e dictionaries;

e link tables;

e documents;

e totals.

The predicate has the following properties:

5@ Predicates, 26 = B
[Predicates: 26) nofiles ~ en & oK Save Cancel
Predicate S0L expression
MName Test artides GROUP_ID not in (547)
Objecttype (@) Dictionary () Document () Link table () Total
Access object | 2945 | = --- || Artide £
Description

Sample predicate, #ubw-1481

e Name —predicate name;

e Access object — object type is Dictionary, Document or Total (Dictionary, Document and Total
respectively) and directly object to which the predicate is applied;

e SQL expression —expression in the SQL language;

e Description —description of the predicate action.

Fast access tools

The tools of the group are used for fast access to metadata objects:

e Document name — selection of the document type by its name (Name) and description in user’s
language (Caption);

e Dictionary name — selection of the dictionary by its name (Name) and description in user’s language
(Caption). Selection is carried out only among non-system dictionaries;

e Total name —selection of the total by its name (Name) and description in user’s language (Caption);

e Script ID —selection of the script by its ID (/D) and the class name (Name).

© 2018 Ultimate 281

ULTRAATE

Developer SOLIn

The selected metadata object opens in the edit form of corresponding dictionary.

When working with fast access tools, the options of code completion technology IntelliSense are
available.

IntelliSense

When the text is entered in the control elements supporting IntelliSense, the system offers a choice
from the list of objects, which name includes the entered fragment:

I bl brl
h -=> o - Barcode (Barcodes) -=r Brand (Brands), _
Eseanss Festares —_BarcodeTrackingType (Barcode tracking types) B access
A
Brand (Erands)

Selection is carried out with a click of the left mouse button on the object in the code completion list or
by pressing the key |Enter| (in that case, the entered text must coincide fully with the object name in the
list, even if this is the only object in the list).

== The entered text can be deleted by pressing the key Delete!:

\ | | ‘
- | - DictionaryName| Delete

% Fast access Fast access Fast access Fast access

==l All possible options of the values, which can be entered in the control element, can be viewed too
by pressing shortcut keys | Cul | +

| |

ol |+ |
AgentExchangeDocument (Agent exchanges)

| AgentExpenseDocument {Agent expenses)

CashPaymentDocument (Cash payments)
EmployeeCashPaymentDocument (Employee cash payments)
EmployeeExchangeDocument (Employee exchanges)
EmployeeExpenseDocument (Employes expenses)
EncashmentDocument {Encashments)
InterstoreTransferDocument {Inter store transfers)
OrderDocument (Order)
PurchaseDocument (Purchases)
SaleDocument (Sales)
StreamTransferDocument (Stream transfers)
TestDoctypeDocument (TestDoctype)
TestDocumentTypeDocument (Test document type)
WageAccountingDocument (Wage accounting)
WirePaymentDocument (Wire payments)

Fast access

© 2018 Ultimate 282

Developer

ULTRAATE

Ribbon Misc

The group of Tools includes the following:
e Hot keys —a dictionary of all the hot keys used in the system;

o |

anguages — localization Tools menu:
Languages —dictionary of the system languages;
Spell checker —by means of which the spell check is realized in the system;
Translation manager — the tool for editing of the metadata translations;
Exception translators —dictionary of the user translators of exceptions —simple
services who take exception to the input and return the translated result. The

SOLID

U] Hot keys
= Languages

J= Languages

"% Spell checker

[EF Translation manager

Exception translators

2
w Exception translations

U] Hot keys

[=i Languages ~
s Misc tools

user translators are carried out after system translators, but before exception - & Shuww%‘mememwks

translations (Exception translations), from which they differ, use of scripts, that
gives more flexible approach to processing of exceptions, but does them a
little more difficult in application;

Exception translations — a simple tool, that allows presenting system
exceptions (errors) in accessible language for an ordinary user.

e Misc tools — other tools for debugging:

Ho

U

Show possible memory leaks — report of the memory leak detector;

Test windows and search for leaks — a command, in turn, opening the available
forms of the client application and showing the report of the memory leak
detector;

MEF Explorer — a tool of debugging of MEF-container of the application;
Preserved objects — the list of the preserved objects, that do not need to be
deleted at the comprehensive cleaning of the base (infrastructure dictionaries
that do not relate to the application area).

Issue trackers — bug-trackers dictionary;

Object issues — a tool for viewing of applications, according to which the
objects of metadata were changed.

t keys

dictionary Hot keys:

Test windows and search for leaks
e MEF explorer

Preserved objects

Issue trackers

Objects issues

“| The list of all shortcut keys available for use in Ultimate AEGIS® system can be found in the

The list can be filtered by non-functional key (Key) used in the shortcut.

The shortcuts already in use are marked with the flag Reserved.

Tag search

U+| Hot keys o BOE
Q| & [T = 44 Filters @
Identity Key Ctrl Shift Alt Reserved -
658 7 v =
559 8 o
660 9 o
561 F1
o62 F2

© 2018 Ultimate

283

ULTRAATE

SOLID

Developer

Languages

ﬂ_‘ The list of all system languages Ultimate AEGIS® can be found in the Languages dictionary:

[E=i Languages o =
o F & Q& = |FE <« Filters &9
Mame Caption
b 1en English
2ru Pycoamii

The dictionary records can be filtered by the language Name(Name).
Language with the identifier 1is a system language by default.

The language has the following properties:

[Languages, 1 = = =&
[Languages: 1 il nofiles -~ en £ 0K Save Cancel
Name en P E s
Caption English

Properties translations

Identity caption Identity Deleted caption Deleted

Name caption Mame Document deleted caption Document deleted
Creator identity caption Creator identity Amount caption Amount

Creator reference caption Document creator Quantity caption Quantity

Creation date caption Creation date Document type identity caption Type identity
Transaction date caption Transaction date Document type reference caption Document type

Version caption Version Document subtype identity caption Subtype identity
Comments caption Comments Document subtype reference caption | Document subtype
Total list caption Totals list Document identity caption Document identity

Table part entry identity caption

Table part entry reference caption

Table part entry identity

Table part entry

Document reference caption

Document description caption

Document

Description

Checked caption Checked

e Name —name of the language;
e Caption —description of the language;
e /con —language icon (with the size of 16 x 16 pixels).
The buttons to the right of icon preview area allow:
.~ —loading the icon;
—saving the icon previously downloaded to the computer;
24 —deleting the icon;
e Properties translations —set of the translations of system properties.

Translation manager

Translation Manager is a tool for centralized editing of the translations of all metadata objects. It
represents a tree of objects with the edited columns “Caption” corresponding to all languages,
supported in system. At start the translation manager automatically shows all objects for which there
are missing translations on the current branch of metadata:

© 2018 Ultimate 284

ULTRAATE

SOLID

Developer
[=F Translation manager = B
Show all objects Create missing default language captions & Save translations
MName Identity Caption.ru Caption.en

3 TempConstant 5855 Temp constant e
MainCurrency Constant h85e Main currency
Website Constant 12302 Website =
PurchasePriceType Constant 7038 Purchase price t...
RedisServerHost Constant 10396 Redis server host
DefaultFirmID Constant 17155 Default firm iden...
AccountingSaleHasMissedAccountingMo Constant 13022 Accounting sale ...
ArticleBarcodePrefix Constant 183206 Article barcode ...
ReleaseCellBarcodePrefix Constant 13444 Release cell barc...
StoreZoneBarcodePrefix Constant 18563 Store zone barc...
PriceRecalcFailEmail Constant 31033 Price recalc fail e...
IssueTrackerURL Constant 31211 Issue tracker URL
BingKey Constant 18567 Bing key
ArticlePriceR eralrulatinonThreadCount Constant 31484 Article nrire reca... T

For objects which have no translation even on language by default, the text in the corresponding column
is highlighted in red. To create translations automatically in the language by default, it is possible to use
the command «Create missing default language captions». At the same time as the translations the
values will be taken from the column Name, divided into separate words (for example, IssueTracker -
Issue tracker).

If all objects already have translations into all languages, the translation manager's form at start will
show an empty list: everything is all right. To display all the metadata objects and their translations it is
possible to use the button-switch «Show all objects»:

[=F Translation manager = B 2
Show all objects Create missing default language captions -] Save translations
Mame Object type a | Identity Caption.ru Caption.en
Register barcodes DocumentCommand 24317 MpoBecTy WTpnx-kooel Register barcodes -
» Create payment request DocumentCommand 25100 CospaTe 3aABKY Ha o... Create payment regu...
Return cargo to a store zone DocumentCommand 35231 BepHyTe rpys B cexumio Return cargo to a sto...
~ Interstore resupply DocumentCommand 30061 Mewcknagckoe nono... Interstore resupply
v =
OfficeHubMotSpedfied ScriptResource 30070 He sagar xab ans o... The hub is not spedfi...
ArtideMotFoundInDoc.., ScriptResource 30423 Toeap #{0} He Haid... Artide #{0} not foun...
ArticleMotReserved ScriptResource 30513 Toeap Ne{ID} "{Mam... Artide #{ID} “{Name...
UnableToReserveArti,.. ScriptResource 30523 He yaanoce sapesep... Unable to reserve on...
Cancel personal bonus DocumentCommand 30091 OTMEHWTH nepcoHan... Cancel personal bonus
» Create pickup lists DocumentCommand 16645 CosaaTe nucTel Habopa Create pickup lists
Try reserve all articdes DocumentCommand 17041 MonpofoBaTe 3apese... Tryreserve all articdes
Reserve all artides DocumentCommand 30984 3apesepswpoBaTth BC... Reserve all artides
Create arcnuntinn sale DarumentCammand 18003 CranaTh Avsrantenc... Create arcounting sale

Objects, that do not require translations are displayed in pale-gray in the list, and in the Caption column
the dash is shown for them. Double-click on the object line opens the object for editing (it is supported
only for top-level objects, such as dictionaries or scripts: to open a property of the directory or, for
example, the resource of the script for editing is possible only in a part of the object-parent). "Save
translations" button keeps the made changes. When closing the translation manager checks if there was
changes from the moment of the last save and asks again if it is necessary.

© 2018 Ultimate 285

ULTRAATE

Developer SOLIn

Spell checker

ABC
In the system Ultimate AEGIS® speel cheecking is realised, which is carried out by means of
dictionaries. The words can be found in the Spell checker dictionaries:

%% Spell chedker dictionaries o =
o F # Q|| i & < Filters i
Identity Language.MName Grammar file name Dictionary file name Comments
3 {mit 1ru ru_RLLaff ru_RLU. txt http:/fextensions.services.openoffice.org/project/dict_ru_RU
3en en_Us.aff en_US. txt http:/fextensions.openoffice.org/en/project/fen_US-dict

Dictionary records can be filtered by the Name of the file of the grammatical dictionary (Grammar file
name).

Itis not strongly recommended to start more than one active (present) dictionary for one language.

The dictionary has the following properties:

"% Spell checker dictionaries, 3 = B

«[Spell checker dictionaries: 3 Il nofiles » en & oK Save Cancel

Grammar file name en_Us.aff
Grammar file 2.97kB “©

Dictionary file name |en_US. txt

Dictionary file 579.82 kB o

Dictionary type 2 ~ |-+-[|2, OpenOffice, OpenOffice dic... | £

Language 1 - [---|l=n F4

Code page 1251 -
| Active

Comments http: /fextensions.openaffice. orgfenfprojectfen_LS

e Grammar file name — grammar file name containing rules of word formation (affixes — prefixes,
suffixes, endings, etc.). The words (roots) are contained in the file Dictionary file;

e Grammar file —file of grammar dictionary. If the dictionary is chosen, its size is displayed at the control
element.
Control key buttons allow:

= " —by clicking the key button the dialog of dictionary loading is opened (instead of present one);

. — by clicking the key button it is possible to save the dictionary, loaded earlier from the
database to the local disk of the computer or other available media;

= 2| - by clicking the key button the dictionary is opened in the program, associated with the
operating system of its type file;
e Dictionary file name — dictionary file name, containing directly words (roots);
e Dictionary file —dictionary file;
e Dictionary type —type of used dictionaries:
= |Spell—dictionaries of a format ISpell;
= OpenOffice —dictionaries of a format OpenOffice;
e Llanguage —language, which check is carried out by means of these dictionaries;
e Code page —code of a used code page;
e Active —the flag, indicating the need to use a dictionary. The dictionary with the removed flag Active is
not used;
e Comments —comments to the dictionary.

© 2018 Ultimate 286

ULTRAATE

Developer SOLIn

Exception translators

Translators exceptions are services that take exception to the input and return the translated result,
suitable for displaying to the end user. Translators distinguishes from exception translations by the use
of scripts, which gives a more flexible approach to exception handling, but makes them more difficult to
use. For more information about exceptions translators see section Scripts.

Memory leak detector

Memory leak detector represents background service of the client application which traces the forms
and elements of the control, remaining in the memory after calling of their method Dispose. Certainly,
not all memory leaks have such nature, however it is the most widespread, resource-intensive and at
the same time simple leaks for search.

A command Show possible memory leaks allows requesting the current report of the leaks detector at
any time. The report represents a table with two tabs: a list of potential leaks of forms and list of leaks
of controls elements. As a rule, forms and elements represent a connected graph in which the leak of
some one element keeps in memory the entire graph.

Possible memory leaks o B

Leaky forms | Leaky controls

Place a column header here to group by that column
Mame Full Name Count Parents | Mames

b | AttachmentsListContral Ultima. Client. Attachments. AttachmentsList. .. AttachmentsListControl
DateRangeFilterContral Ultima. Client. Controls.Filtering. DateRange. .. DateRangeControl, ReverseDat...

DictionaryGridViewPanel Ultima. Client, Controls.DictionaryGridViewP. .. CurrencyRatePanel, CurrencyRe...

L T S I

DictionaryFilterLayout... Ultima. Client, Controls.Filtering. Dictionar yFil. .. FilterControl
UltimaTextEdit Ultima, Client, Controls, UltimaTextEdit ultimaTextEdit1
LltimaTextEditComma... Ultima, Client, Controls,UltimaTextEditComm. ., CommandsControl

The detector report does not allow eliminating the leaks, it only states the existence of a potential
problem. For search and elimination of the concrete reasons of leaks you should use a specialized
memory profiler.

A command Test windows and search for leaks automatically opens and closes all forms of dictionaries
and documents, available on the client. This process can take several minutes and can display errors if
some of client forms do not work. When all the forms are closed, the command will display the leak
detector report or a message that the potential leaks are not detected. The similar tool allows quickly
estimate the existence of problems in the project, for example, before a deployment of the next
application version.

LT] The message, that leaks are not found, is not a guarantee that there are no memory leaks in

= the program! The built-in detector has limited functionality and it is not a replacement of the
real memory profiler at all. To guarantee the lack of leaks, you should analyze the snapshots,
received by means the profiler. However, if the memory leak at the level of a form or
elements control exists, the built-in detector, as a rule, will be able properly to outline the
circle of suspects.

© 2018 Ultimate 287

ULTRAATE

Developer SOLIn

MEF Explorer — debugging

" #" The MEF platform (= eng/rus) is the framework for the Ultimate AEGIS® system. It assembles an
application from independent components, such as kernel services, scripts and applied classes. MEF is
used both in server and client parts, making the program to have an identical modular structure in both
cases and use single API, which is well documented and rather popular.

MEF is a late binding system based on the comparison rules. The comparison is carried out between so
called imports and exports provided by the components. To get a component ready to go, all its imports
must be compared with exports of other components. Binding is carried out during the execution of the
program, which ensures the desired flexibility. The components to build the program may be developed
simultaneously by separate programmers' teams: e. g., the form of a client application may use a server
service, which is under construction, provided that the service interface is formally coded.

A downside of such flexibility is binding errors. If in the process of execution the application needs a
service that is not yet implemented, a binding error will occur. The program components may have
sophisticated relations, and even if one such relation is not found, the whole component becomes
useless.

Unfortunately, the diagnosis of such bugs is difficult. All that MEF knows at the moment of occurrence of
a binding error is that one of the binding rules cannot be complied with. A typical text of the bug in such
case is as follows:

The composition produced a single composition error. The root cause is provided below.
Review the CompositionException. Errors property for more detailed information.

1) No exports were found that match the constraint:

ContractName Ultima.Scripting.IUserCommand
RequiredTypeIdentity Ultima.Scripting.IUserCommand
RequiredMetadata
ScriptID (Ultima.Scripting.IScriptMetadata)
Resulting in: Cannot set import '
ContractName Ultima.Scripting.IUserCommand
RequiredTypelIdentity Ultima.Scripting.IUserCommand
RequiredMetadata
ScriptID (Ultima.Scripting.IScriptMetadata)' on part '(name)'
Element:
ContractName Ultima.Scripting.IUserCommand
RequiredTypeIdentity Ultima.Scripting.IUserCommand
RequiredMetadata
ScriptID (Ultima.Scripting.IScriptMetadata) --> Unknown Origin
at System.ComponentModel.Composition.CompositionResult.ThrowOnErrors(AtomicComposition
atomicComposition)
at
System.ComponentModel.Composition.Hosting.ImportEngine.SatisfyImportsOnce(ComposablePart
part)
at

System.ComponentModel.Composition.Hosting.CompositionContainer.SatisfyImportsOnce(Composab
lePart part)

Itis only clear from the text that some component cannot be provided upon the system request. Which
component exactly is the cause of the error and how to correctitis unclear.

Since it is only applied errors of such kind that are of interest to programmers, the range of possible
causes narrows down to two typical situations:
e errorin ascript (not necessarily in that one requested);

© 2018 Ultimate 288

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/ru-ru/library/dd460648.aspx

ULTRAATE

Developer SOLIn

e errorinaclientform (orin one of its relations).

To investigate such errors on the basis of the console utility Mefx, a
tool called MEF explorer was developed. It shows the structure of MEF i Languages -
catalogs for client and server parts (in the corresponding tabs). o5 Misc tools ~

\U+] Hot keys

Show possible memory leaks

Test windows and search for leaks
MEF explorer

Preserved objectJ}

Issue trackers

Objects issues

& MEF Explorer o B =

Client application | Server application
Composable parts Description Exports
e T T : Ultima. ClassDescriptors.MetadataDescriptorLocator Export

= Ultima. ClassDescriptors. MetadataDescriptorl ocator ...
Status Composable part Part type Script

Ultima, ClassDescriptors, MetadataDesoriptorLocator ﬂ] Metadata

@ Accepted Ultima,Log.Logger Other Imports Satisfied by
@ Accepted Ultima.Log.LogManager Other Status Import Export -
@ Accepted Ultima. Metadata. AcceptancelistArticleTablePar tRow [E Metadata & satisfied AllDescriptors Ultima.Metadata. AcceptancelistArtideTablePart. .. =
& Accepted Ultima. Metadata. AcceptancelistDocument [E Metadata & satisfied DescriptorLocator Ultima.Metadata. AcceptancelistDocument. Static. .
& Accepted Ultima. Metadata. AcceptanceRequestartideTablePar tRow [E metadata Ultima.Metadata. AcceptanceRequestArtideTable. ..
@ Accepted Ultima.Metadata. AcceptanceRequestDocument ﬂ] Metadata Ultima.Metadata. AcceptanceRequestDocument....
@ Accepted Ultima.Metadata. AccOperation ﬂ] Metadata Ultima.Metadata, AccOperation. StaticClassDescri...
@ Accepted Ultima.Metadata. AccountableCashDocument ﬂ] Metadata Ultima.Metadata. AccountableCashDocument. Sta. ..
@ Accepted Ultima. Metadata. AccountingSaleDocument ﬂ] Metadata Ultima,Metadata. AccountingSaleDocument. Static, .
@ Accepted Ultima. Metadata. AccountStatementDocument [E Metadata = Ultima. Metadata. AccountStatementDocument. St...

If no errors occurred, all component imports are compared with exports of other components, and all
the composable parts are supplied with the status 3 Accepted.

Of course, other statuses are of greater interest. Any binding error means that the component was

rejected due to one of the following reasons:

&4 Primary Rejection — particular component's imports lack corresponding exports;

! Rejected — component's exports exist, but cannot be created, as their imports, in their turn, lack
corresponding exports.

Let's see, what actions the application programmer will perform, once the error occurred.

Suppose that the binding error (No exports were found that match the constraint...) occurs during the

MobileStorePickupService request. However, the real problem is never in the request. If to open the
scriptin an editing program, we will see that it is compiled without errors. To identify the reason, run

MEF Explorer and search for the component that caused the error in the Composable parts list by its
statuses, Rejected or Primary Rejection, and name.

© 2018 Ultimate 289

Developer

When selecting this component in the Imports list, to the right of the component, there will be shown
all imports that are either bound or unbound with exports. Viewing unbound imports, we can find out

the real cause of the error:

ULTRAATE

SOLID

a5 MEF Explorer

Client application | Server application

Compasable parts
Status <

Composable part Part type
> Status: § Accepted
v Status: €3 Primary Rejection
Ultima. Scripting. Mobile. MobileStacktakingService {cached) G{;‘(Mabile service
Ultima, Scripting, Mobile, MobileStorePickupService (cached) i"{‘;‘ Mobile service
v Status: (! Rejected
Ultima, Scripting, Mobile, MobileStoreR eleasePickupService ... i"{;‘ Mobile service
Ultima, Scripting, Mobile, MobileStoreTransferPickupService. .. i"{;‘ Mobile service

Script

18838

15205

19954
17703

Description

[Primary Rejection]
Ultima. Scripting. Mobile. MobileStorePickupService

(cached)

Imports

Status

& satisfied
& satisfied
& satisfied
& satisfied
& satisfied
@ satisfied
@ satisfied
& satisfied

& satisfied

Import

Ultima. Client. [UserMessages

Ultima. Dictionaries. IDictionaryManager
Ultima. Dictionaries. ILinkTableManager
Ultima. Documents. IDocumentManager
Ultima. IConstantManager
Ultima.Ling.ITableSource

Ultima, Log.ILogManager

Ultima. Scripting. IEmployeeService
Ultima. Scripting. IStorePickupService

4" Ultima. Scripting. IStoreZonePickupService

Ultima. Server.Data.I1SqlService

Exports
Export
Ultima. Scripting . Mobile, IMobileStorePickupService

Exception

System, ComponentModel, Compesition, ImpertCardinalityMismatchExcep
tion: No exports were found that match the constraint:
Contractiame Ultima. Seripting. 1StoreZonePickupService
RequiredTypeldentity Ultima. Scripting. [StoreZonePickupService
at
System,ComponentModel, Compesition, Hosting, Expor tProvider, GetExp
orts{ImportDefinition definition, AtomicComposition atomicComposition)
at
Microsoft.ComponentModel. Compasition. Diagnostics. CompositionInfo. A
nalyzelmportDefinition (ExportProvider host, IEnumerable” 1
availableParts, ImportDefinition id) in c:Wwork\UltimaKernel\Libraries
WhimaLibYComposition\Diagnostics\CompositionInfo. cs:line 278

Unsuitable exparts

Export Issues

In the example above, we can see that the problem is in IStoreZonePickupService. This application

service is absent in the server-side catalog. There may be the following reasons for that:
e the service has an interface, but it is notimplemented so far;
e the interface is implemented, but there are compilation errors;

e the MEF Cache of the service script is empty for some reason (probably, as a result of merging of

metadata versions).

To correct the error, you need to:

e find the IStoreZonePickupService interface in the Interfaces dictionary:

%‘5 Interfaces = B R
e F # | & @ F & istorezone o, o, E [|-
Mame Identity Mame
v Interfaces 22362 IStoreZoneAcceptanceservice
Finances » toreZoneFickupService
Validation
» Store
Production
e check if the interface is implemented (if not, add implementation):
8 Interfaces, 17156 = B R
«E Interfaces: 17136 1l nofiles -~ en oK Save Cancel
Interface Services
Mame IStoreZonePickupService e f & o, - ' -
Script Click here to edit the script... -
Identity MName
Folder Stare N » 17159 {StoreZonePickupService
Metadata tags & Hdit
& Delete
Developer's comments P Edit script |:

© 2018 Ultimate

290

Developer

¢ ifimplemented, repair the implementation script:

ULTRAATE

SOLID

[# StoreZonePickupService, 17161 = B2
+«E Scripts: 17161 [+ | €3 Check source # =% Gotoline Current Element | j% StoreZonePickupService x QK Save Cancel
Script text | Resources | Generated Text (read-only) | Generated Resx (read-only) | MEF Cache (read-only)
28 public partial class StoreZonePickupService " i
29 {
3e [Import
31 private IStorePickupService StorePickupService { get; set; }
Errors =
Text ¥ | Line Column Is Warning
3 CS 1003 Sintax error, expected "]" 30 16
| Errors | | Properties | | Find all | | ersions history | | Changes history
Preserved objects
In the process of development there can be a need to clear applied T Hotheys
=

base of the data, created as a result of testing for example. But at the
same time there can be such dictionaries and link tables which data can

not be deleted.

The list of such objects is stored in the list of the preserved objects
Preserved objects. This list is the declarative one, that is applied
developer who is carrying out the cleaning of the database is guided by
it when making requests to delete the data and does not include the

list of the mentioned objects in them:

[=i Languages ~

45 Misc tools ~ :

@ Show possible memory leaks
Test windows and search for leaks
MEF explorer

Preserved objects Ib

Issue trackers

Ohbjects issues

Preserved objects

© |[H|E =
Object
2727 — BarcodeTrackingType — Dictionary
2850 — WarrantyPeriodUnit — Dictionary
2836 — AgentType — Dictionary
2897 — AgentForm — Dictionary

4

{13056 |~ ---|ArticleState — Dictionary

3083 — PriceZone — Dictionary

3098 — PriceType — Dictionary

3152 — Gender — Dictionary

3189 — ContactType — Dictionary

3433 — ArtideFeatureType — Dictionary
4416 — Currency — Dictionary

4426 — Bank — Dictionary

The object can be added to the list

type).

can be deleted & by the
corresponding key buttons in the toolbar. When adding a new
object it is previously necessary to choose its Type (Object

Mew preserved object

Object type |[Dictionary — DICTIOMARIES |-

Object -

COK Cancel

© 2018 Ultimate

291

ULTRAATE

Developer SOLIn

Object issues

In the system Ultimate AEGIS® issue & bug tracker is realized (further

U] Hot keys
tracker).

=i Languages ~

oo Misc tools -

When changes fixing an application developer can specify the request
identifier in tracker, within which changes were made to metadata. In
case identifier input all objects which changes are fixed will be marked
as changed within this request. The entered identifier shall match the
request identifier in URL tracker — in this case the request can be
opened in atracker from metadata object. R %

Objects issues

il Show possible memory leaks

Test windows and search for leaks

e MEF explorer

Preserved objects

At the same time it place restrictions on the application developer. If changes made within two and
more requests are fixed they will not be marked correctly with IDs. In case of operation with several
tracker requests it is necessary before operation within the following request to record changes by
previous.

Use of several trackers, which list can be found in the dictionary Objects issue and bug-tracking system,
is possible (opens the Issue trackers command):

[5] Objects issue bug-tracking system = =R
o F & ol | g [2 [E] | Max. rows: | 10000 & < Filters i
Identity Mame Tracker URL

b 3; The second hittpe: /v ruf{Issueld}
1 UltimaBusiness\Ware Tracker http: /ftracker .ultimabusinessware, com/fissus/{Issueld}

Name (Name) and URL (Tracker URL) should be set for a tracker. URL needs to be set in the
http://tracker.ultimabusinessware.com/issue/{Issueld} format (the part which needs to be changed to
appropriate URL s highlighted in bold). {Issueld} part should be left invariable in the resultant address,
itis replaced with number of the specific request.

Itis possible to find all changes entered to all metadata objects within the specific request with Objects
issues tool.

In Metadata objects issues form it is necessary to select a tracker (/ssue tracker), to enter a code of its
request (/ssue identity) and press "Find issue". All object list when their changes fixing this identifier
was entered will be output in search results:

Metadata objects issues o =

Izzue tracker |UltimaBusiness\Ware Tracker (http:ff... | = | Issueidentity ec-677

Identity Mame Cbject type
b w 8026 Artide prices recalculation UltimaTask — TASKS
8028 TaskB026 Script — SCRIFTS

e /dentity —a code of the changed metadata object;
e Name —object name;
e Object type —system object time.

© 2018 Ultimate 292

ULTRAATE

Developer SOLIn

Itis also possible to look within what requests the specific metadata object changed. For this purpose in
the form of its editing it is necessary to click [» toolbar button. The opening form Metadata objects
issues is divided into two parts:

..a_v,” User commands, 6700 = =
«[User commands: 6700] nofiles - en | [| & 5 Start now oK Save Cancel
o] o e
]
1
Metadata object issues 3
Metadata objects | Show children issues
Identity MName Object type Identity MName Object type Issue date
» 6700 xpoft's test command UserCommand — USER_COMMANDS » 5701 UserCommands700 Script — SCRIPTS 8/25/2014 11:07:11 AM
6701 UserCommand6700 Seript — SCRIPTS 5701 UserCommands700 Script — SCRIPTS 9/16/2014 5:03:20 PM
6701 UserCommands700 Script — SCRIFTS ec-99 8/25/2014 11:07:33 AM
6701 UserCommands700 Script — SCRIFTS ec-101 10/6/2014 2:23:32 FM
6701 UserCommands 700 Script — SCRIPTS ET- 100 10/6/2014 10:57:07 AM

| Open in browser http:/fwww.rufec-100 I

In the left part of the form Metadata objects metadata objects are displayed in a tree structure. The first
level is an object from which editing form this form was opened and also all its child objects which
changed within any requests:

e /dentity —a code of the changed metadata object;

e Name —object name;

e Object type —system object time.

In the right part of the form the list of requests within which the object selected at the left changed is
displayed. Flag activation Show children issues over the list it is possible to output in it also requests
within which its child objects changed:

e /dentity —a code of the changed metadata object;

e Name —object name;

Object type — system object time.

Issue identity —tracker request code. by clicking the link the request opens directly in a tracker;

Issue date —change date according to the request.

Tracing
Tracing is used to trace the application execution. In tracing mode it is possible to track the sequence of
the commands and values of query parameters that makes it easier to detect the errors.

Tracing tool is included in the basic module, since the use of its functionality may be required in the
session of the ordinal user who isn't granted the developer permissions.

© 2018 Ultimate 293

ULTRAATE

Developer SOLIn

Tracing is started using the Tracing... menu item. e =
In the opened window Run tracing it is possible to choose objects
which work needs to be monitored: B Save settings Recently use
Run tracing 3 Loa N
Permissions Constants o L
Predicates Handlers Obje mhe
- o *ii" Change password
Start a new instance
Commaonly us
Run Cancel Motifications
% Tracing... I}
SQL queries
In the opened window of SQL queries the following functionality is available:
e click the key button ¥ to erase tracing results, clearing the window;
e click the key button [u] to stop tracing or || to start it again;
o click the key button 5] to turn off the stack trace function or |5 turn it on;
e click the key button *z to open and hide a group panel:
e D ULTIMA, Default, mick@ocalhost:3192 o B =%
C @
S0L queries B ox
H| |StartDate - | Command text End Date Exec duration Fetch duration Command text | Parameters = Array pa
5
00:00:00
Windows ~ =
SQL queries 1 x
H| |StartDate = |Command text End Date Exec duration | Fetch duration Command text | Parameters (11) | Array parameters {ength: 2) d 4
W | 21:46:04.842 DELETE FROM TM_AGENT_DEETS 21:46:04.849 00:00:00.005 00:00:00.000 & INSERT INTO VTM_AGENT_DEBTS Q
& |2146:04.899 INSERTINTO VTM_AGENT DEBTS (DOCUMENT_ID, TRANSACTION... 21:46:04.857 00:00:00.006 0D:00:00.000 = (DOCUMENT_ID, TRANSACTION_DATE,
21:46:04.858 WITH TRANS AS (- Current transactions of the document SELECT ... 21:46:04.871 00:00:00.012 00:00:00,000 VALUES .
21:46:04.871 DELETE FROM TR_AGENT_DEBTS WHERE DELTA_NOIN (WITHTE... 21:46:04.877 00:00:00.005 00:00:00.000 (:DocumentID, :TransactionDate,
00:00:07.... < B 0 >
Command text | Parameters (10) | Array parameters (length: 2) | Call stack | Exception Command text | Parameters (10) | Array parameters {(length: 2) | Call stack | £

at Ultima. Client. Tracing. TraceEventArgs. .ctor() in c:work\Ultimakernel\Inter faces\Ultimalnterfaces\Client\Tracing{TraceEventArgs. cs:line 2

Mame Db Type Direction Value at Ultima. Client. Tracing. SqlQueryEventArgs. . ctor (String commandText, IList” 1 parameters, DateTime startDate, TimeSpan duration) in c:wn

B 3 at Ultima, Server,Data.UltimaDbManager . OnAfterOperation{OperationType op) in c: work\UltimaKernel\Server \UltimaServerImplementation’

JVARTICLE D i [zl SRErE =z at BLToolkit.Data,.DbManager . ExecuteOperation[T] (OperationType operationType, Func” 1 operation) in d:\Externals\BLToolkitGitMine \Sour

vCHECKED Byte Input System.Object[] at Ultima, Server Documents, TablePartvManager * 1. InsertRecords(IEnumerable” 1 insertedRecords) in c:work Ultimakernel\Server \UltimaSer

- at Ultima. Server. Documents. TablePartiManager * 1.5aveRecords(TablePart” 1 tablePart) in c:workiUltimaKernel\Server\UltimaServerImpleme

VDELETED Byte Input System.Object(] at Ultima. Server. Documents. TablePartiManager * 1.Ultima. Server. Documents. ITablePartManager. SaveTablePart{ITablePart tablePart) in c:ly +
vDOCUMENT_DELETED Byte Input System.Object] ~

4 i

nj »
mnj »

Command text | Parameters (10) | Array parameters (length: 2) | Call stack | E:

VCHECKED |vDELETED |vDOCUMENT_DELETED |vDOCUMENT_ID | vID VQUANTITY_FOR_PICKUP | vQUANTITY_PICKED |vTP_ENTRY_ID |vTRANSACTION_DATE
False False False 116265 5706676 1 0 15128 3(24/2015 6:08:11 PM
491967 False False False 116265 5706677 1 0 15128 3/24/2015 6:08: 11 PM

Columns in the list of SQL queries:

e Start Date —start date and time of the query execution;
e Command text—SQL query text;

e End Date —end time of the query execution;

© 2018 Ultimate 294

ULTRAATE

Developer SOLIn

e Exec duration —time of the query execution at the database server;
e fFetch duration —data transmission time from the database server to the application server.

In the tabs to the right of the requests list the following items are located:

e Command text—SQL query text;

e Parameters —query parameters;

e Array parameters — parameters arrays (in this case, as in the shown example, in the tab Parameters
they are not displayed);

e Call stack — call stack;

e Exception —exception text, if it has arisen when performing the query.

Requests throwing exceptions are highlighted in red in the list. Infrastructure queries not related to
business logic are highlighted in :

SOL queries 1 x
H| |StartDate « |Command text End Date Exec duration | Fetch duration Command text | Parameters (1)
0 21:46:03.874 SELECT c.CLOSED_PERIOD as ClosedPeriod FROM KERMEL.VA... 21:46:03.... 00:00:00.005 00:00:00.000 - KERMEL .PACK_KERMEL.SET_UNRESTRICTED_ MODE
] 21:45:03.880 SELECT . AUDIT_PERIOD as AuditPeriod FROM KERMEL.VACC... 21:46:03.... 00:00:00.003 00:00:00.000 =
21:46:03.885 INSERT INTO VD_ACCOUNT_STATEMENTS { AMOUNT, COMME... | 21:46:04.... 00:00:00.175 00:00:00.000 -- VMODE=['8"]
21:46:04.075 SELECT KERNEL.INTEGRATION_TEST_RESULTS_SEQ.MEXTVAL... 21:46:04.... 00:00:00.004 00:00:00.000
-

00:00:07....

Permissions

Itis possible to filter results of permissions tracing event by their source (on the server or the client) or
by the name:

Permissions 1 x

T Dictionaries, Read: 1 [3:28:02 PM] = =R
g [n s Both Client () Server a|x
Time: 3:28:02PM Call point: dient Check result: allowed
MName Time Call point Check result Stack trace el | > Description: Dictionaries, Read
Dictionaries, Read 328:02PM Client Alowed Shog at Ulima. Client. Tracing, TraceEventargs..ctor() in ¢ Wwork\Ultimakernel\InterfacesUlimalnterfaces\ClientT &
Dictionaries, Read 3:28:02PM lient Allowed i at Ultima. Client. Tracing. BasePermissionEventargs. .ctor (PermissionCheckResult cheddResult) in c:workUltim
[6]; Customize layout 3:28:03 PM L - Allowed She 3 at Ultima. Client. Tracing. DictionaryPermissionEventargs. .ctor (Type dictionaryType, AccessOperation accOpe

at Ultima. Client. Callinterceptors. CachedDictionaryPermissions. IsDictionar yAccessAllowed (DictionaryDescript
at Ultima. Client. Callinterceptors. CachedDictionaryPermissions. IsAllowed(Type dictionaryType, AccessOperz
at Ultima. Client. Callinterceptors. CachedDictionaryPermissions. <CreateCalInterceptors>b__ 4{Calllntercept
at Zyan, Communication, CallinterceptorBuilder ™ 1. <»c__DisplayClass12” 3, <Func=b__14{CalllnterceptionDz
at Zyan, Communication.ZyanProxy.HandleCalInterception{IMethodCallMessage methodCallMessage, Boole:
at Zyan.Communication. ZyanProxy. Interceptandinvoke (IMe thodCallMessage methodCallMessage, Boolean
at Zyan.Communication. ZyanProxy.Invoke(IMessage message) in D:\Externals\Zyanisource\Zyan. Communi
at System.Runtime.Remoting.Proxies. RealProxy. Privatelnvoke (MessageData®& msgData, Int32 type)

at Ultima. Auth.IAuthManager. IsAllowed(Type dictionaryType, AccessOperation accOperation)

at Ultima. Client. Dictionaries . DictionaryHelper. < >c__DisplayClass3. <DemandReadPermission=b__ 00 in c:'w
at System.Threading, Tasks. Task ™ 1.InnerInvoke ()

at System, Threading, Tasks. Task. Execute()

at System.Threading. Tasks. Task. ExecutionContextCallback{Object obj)

at System.Threading. ExecutionContext.RunInternal (ExecutionContext executionContext, ContextCallback

4 I »

Scripts

Script tracing displays the script call hierarchy during the remote server calls (such as document
commands). Calls are arranged in a tree-like structure according to their execution order. Script tracing
detects only calls between different scripts, that is, the script calling its own different methods is
represented with the single line in the tracing. When the tracing event is selected, the right panel loads
and displays the corresponding script text and selects the method related to the selected tracing event:

sapts 2 x
5| [interface Method SaiptD | Time < [Duration St text
W | DocumentCommand Execute(long recordld, IDictonary <siring, object> parameters, IList<. 20405 19:59:01.290 00:00:18.5926930 205 1f (rdocument.Convertation.Hasvalue) ~
= TDocumentEventander Afterl oad(IDocument document) 3 4 . faul R .
DomenErnt e At b Docmont documont) 2:; ocument . Convertation - GetDefaultConvertation(personalBonus
& IDocumenteventrandier (IDocument document) = 3
280 else if (document.PersonalBonusAmount.HasValue)
TDoamentEventHander... BeforeSave (Document document) 7 281
IStoreservice tSour long 7228 282 throw new UltimakarningException(PersonalBonusTypethotset);
IDictionaryEvent... AfterLoad(IDictionaryRecord record, bool withinnerObjects) %102 283 }
I5aleservice Checkagentlong agentd) 8083 19:53:11747 00:00:00.0162399 284 }
TaxD: JculateT: SIB53 19:50:12.234 00:00:03.2077594 §=>
86
IMaxDocumentrie... CalculateTaxes(Document documen?) SEB60 19:59:13871 OD:DO:01.5687257 P .
@xDocumentrte.. CalasteTaxes(Document document) 287 public void DistributePersonalBonusByArticles(SaleDocument document)
IivideService GetArtideCeds(DList articelist, bool lastOrly = false) 5953 19:59:15,374 OD:00:00.0587415 e
EETE Goaument) : 289 // subtract previous saving personal bonuses
ToamentEventrender GenerateDescrption([Document document, ref sring descripton) 200 document .DistribPersonalBonus. Where (personalBonusPos => personalBonu
refsiring description) 201 ForEach(bPas =>
ToaumentEventrander AfterSave (Document document) 19:59:19.297 292 {
155919299 203 var article = document.Articles.SingleorDefault(art => art.A
TDocumentEventHander... AfterSave (Tocment document) 3 19:50:10.65; &4 v tcle | n
I5aleservice CheckagentReservelong agentld) 5088 13:59:19.658 00:00:00,1227678 iz; If (article 1= null)
Istockseruice < S035 12:59:19.796 O0:00:00.0553080 207 article.SalePrice -- bPos.PersonalBenusItem;
208 articla Amount = hDnc Damsana TRonusAmannt - A
< >

Script tracing tree list displays the following columns:
e Interface —script interface name;

© 2018 Ultimate 295

ULTRAATE

Developer SOLIn

Method —the name of the called method;
ScriptID —script identity;

Time — starting time of the script execution;
Duration —the duration of the executed method.

Server calls that throw exceptions are highlighted in red. When selected, these events activate the
Exception tab on the right panel that displays the exception details.

KERNEL scheme

The database consists of two schemes: kernel and subject ones. In the subject scheme, the tables are
created and the data of subject area is stored, and the metadata describing business logic and business
objects are stored in the kernel scheme.

The structure for metadata storage is described in this chapter.

Data types

In the system Ultimate AEGIS® the following data types are used:
e int—integers, 64-category;

e Jong —integers, 64-category;

e decimal—decimal, 96-category;

e bool—for storage of logical values;

string —aline in size no more 2Kb;

text—a textin size no more 2Kb;

LargeText —a line of the unlimited size;

date — date (without time);

DateTime — date and time (it is broadcast on time zones);
e byte[] —array (binary, is used to store binary files).

Property types are not displayed in the documents journals and list forms dictionaries (and, accordingly,
in their filters and forms of columns selection): LargeText, text; and byte[] (binary).

Dictionaries

Ultimate AEGIS® system provides the application developer with the mechanisms for creation and
edition of the dictionaries describing business objects of the subject area.

Description of dictionaries is stored in the kernel scheme of database in the following tables:

e DICTIONARIES — attributes of the dictionaries;

e DICT PROPERTIES —properties of the dictionaries;

o PROP_TRANSLATIONS — localized value of dictionary fields, translated into the language different
from default one;

e DICT TOONEREFS —relations of properties of the dictionaries with other dictionaries;

o [INK_TABLES —attributes of link tables;

e LINK_PROPERTIES —properties of link tables;

e LINK TOONEREFS —relations of properties of the link tables with other dictionaries;

e DICT_LINKTABLES —relations of dictionaries with others through the link tables.

The fields of these tables will be detailed below during description of the mechanism for creation of
new objects of dictionary type.

Using the tables OBJECTS and VERSIONS , configuration versioning mechanism is implemented.

© 2018 Ultimate 296

Developer

e OBJECT_ID-object ID;

e VERSION_ID —configuration version ID.

Physical (ER) model of data looks like as follows:

ULTRAATE

SOLID

Each of the tables describing the dictionaries, has two key fields related to corresponding tables:

PROP_TRANSLATIONS LANGUAGES
7 OBJECT_ID (FK) —(ID ‘
#VALUE_ID
7 LANG_ID (FK) l CAPTION ‘ VERSIONS
NAME
STRING_VALUE —{71p
CLOB_VALUE E
PARENT_ID (FK)
— LANG_ID (FK)
EDITION_NAME
DICT_PROPERTIES DICTIONARIES 1S COMMITTED
' -
7 OBJECT_ID (FK) 10— | —ef7 0BIECT ID (FK) L
7 VERSION_ID (FK) 7 VERSION_ID (FK) VERSION_TAGS
NAME NAME FID
CAPTION CAPTION
DICT_OBJ_ID (FK) o— T TABLE_NAME B‘Q{“F N Ib (K
COLUMN_NAME CASHED % VERSION_ID (FK)

TYPE_ID (FK)
CONTROL_ID {FK)
STRING_SIZE
IS_MULTILANGUAGE
IS_REQUIRED

DEFAULT VALUE

DICT_TOOMEREFS

7 OBJECT_ID (FK)
F VERSION_ID (FK)

DISPLAY_FORMAT
SCRIPT_OBI_ID (FK)
IS_SMALL
TRANSP_LOCALIZATION

NOTIFICATION_ENABLED
PARENT_REF_OBI_ID {FK)

DICT_LINKTABLES

——e OBJECT_ID (FK)
F'VERSION_ID (FK)

NAME
CAPTION

DICT_OBJ_ID (FK)

]:“1

NAME
CAPTION
DICT_OBI_ID (FK)
PROP_OBJ_ID (FK)
REF_DICT_OBJ_ID (FK)

k.

OBJECTS ‘

p
1+ 1D

LINK_PROPERTIES

7 OBJECT_|D (FK)
7 VERSION_ID {FK)

NAME
CAPTION
LINK_OBI_ID (FK)
COLUMN_NAME
TYPE_ID (FK)
CONTROL_ID (FK)
STRING_SIZE
IS_MULTILANGUAGE
IS_REQUIRED
DEFAULT_VALUE
IS_KEY

e

TYPE_ID (FK)

OBJECT_TYPES
-
0]

p
|

NAME
TABLENAME
DESCRIPTION

LINK_TABLES

p
7 OBIECT_ID (FK)
7 VERSION_ID (FK)

NAME
CAPTION
TABLE_NAME

hﬁ

LINK_OBJ_ID (FK)
PROP_OBI_ID (FK)

LINK_TOONEREFS

L7—e|/ OBJECT_ID (FK)
FVERSION_ID (FK)

L

NAME
CAPTION
LINK_OBJ_ID (FK)
PROP_OBI_ID (FK)
REF_DICT_OBI_ID (FK)

The application developer can perform queries to metadata and through the views — virtual tables,
obtained by retrieval from the database of all objects relating to one configuration, which ID is obtained
from the current session. Therefore, while accessing the database tables and making changes to them,
the developer gets access only to the configuration version selected during login to the system. For all
tables of the views, prefix "V" is added to the table name.

© 2018 Ultimate

297

Developer

ULTRAATE

SOLID

The model of the projection of current version of data looks quite simplerin that case:

PROP_TRANSLATIONS

LANGUAGES / OBJECT_ID (FK)
FVALUE_ID
FID 7 LANG_ID (FK)
LINK_TOONEREFS CAPTION STRING.VALUE
D | NAME CLOB_VALUE
NAME
CAPTION VLINK_PROPERTIES
—a LINK_OBJ_ID (FK)
PROP_OBIJ_ID (FK) a
REF_DICT_OBJ_ID (FK) AE
N CAPTION
VLINK_TABLES LINK_OBJ_ID (FK]
1D COLUMN_NAME
TYPE_ID (FK)
DICT_LINKTABLES NAME CONTROL_ID (FK)
CAPTION STRING_SIZE
L TABLE NAME IS_ MULTILANGUAGE
- Is_REQUIRED
NAME DEFAULT VALUE
CAPTION S KEY
DICT OBJ_ID (FK) o -
LINK_OBJ_ID (FK)
PROP_OBJ_ID (FK)
VDICTIONARIES VDICT_PROPERTIES
(71D 71D
NAME NAME
CAPTION CAPTION
DICT_TOONEREFS TABLE_NAME DICT_OBJ_ID (FK)
ID CASHED COLUMN_NAME
NOTIFICATION_ENABLED TYPE_ID (FK)
NAME PARENT REF_OBJ_ID (FK) CONTROL_ID (FK)
CAPTION DISPLAY FORMAT STRING_SIZE
DICT_OBJ_ID (FK) SCRIPT_OBI_ID (FK) IS_MULTILANGUAGE
PROP_OBJ_ID (FK) IS_SMALL Is_REQUIRED
REF_DICT_OBJ_ID (FK) TRANSP_LOCALIZATION DEFAULT_VALUE

Table PROP_TRANSLATIONS of data model has no prefix "V", since it is not a view because it is not
versioned.

EEH Table DICTIONARIES keeps the attributes, which describe the dictionary and its table in the subject
scheme of database:

NAME —a name of the dictionary defines the name of generated class;

CAPTION — dictionary name displayed in the screen forms, for example, for the dictionary of

contractors Agents; the name can be "Contractors" or "Dictionary of contractors";

TABLE NAME —a table name in the subject scheme of database (as a result of restrictions imposed by

Oracle DBMS, the name can contain only Latin letters in the upper case, figures and sign " ",

moreover, the name must start with a letter and have a length of not more than 30 characters);

CACHED — caching flag if being set —the dictionary is cached on the computers of end users. In case of

its repeated retrieval, the data are taken from the local copy but not from database server, which can

be used for the dictionaries with rarely changed data, e.g. with the list of offices.

LT] For cached dictionary, the notifications of the change are always distributed, therefore
] frequently changed dictionaries should not be made cached.

NOTIFICATION_ENABLED — a notification flag, used for notification of the changes made to the

dictionary data. For cashed dictionary, the notifications are distributed always irrespective of flag

status;

© 2018 Ultimate 298

ULTRAATE

Developer SOLIn

e PARENT_REF_OBJ_ID (FK) — the attribute is used to create tree-type dictionary. A link to the table
record DICT_TOONEREFS is used as its value, which indicates which of the properties of selected
dictionary (fields of its table) is parent one (PARENT _ID in the example):

"Articles" dictionary

ID NAME PARENT_ID

1 Memory cards NULL #--Memory cards

2 USB-flash NULL = USB-flash

3 Transcend 8Gb | 2 : Transcend 8 Gb
4 Kingston 8Gb 2 Kingston 8Gb

5 ,Kmﬂr-tan_ggh_._._._,z_____/_ﬂ_._-— : Kingston 4Gb

e DISPLAY FORMAT — a format of the rows, in which dictionary records are displayed in the screen
forms, when produced notin table but in the row form;

e SCRIPT OBJ_ID (FK) — the handler of dictionary events (before creation, before saving, after saving,
before deletion, after deletion), is created as may be necessary;

o TRANSP_LOCALIZATION - a flag for localization transparency (true — the dictionary is localized in a
transparent manner, false —the dictionary is localized in non-transparent manner).

Localization of dictionaries is detailed in the next section.

EEE Table DICT_PROPERTIES describes the dictionary properties —in fact, its table fields:

e NAME —name of the property, defines the name of the property of generated class;

e CAPTION —dictionary property name displayed in the screen forms, e.g. for the property Name of the
dictionary of contractors it can be "Name of the contractor" or "Contractor's name";

e DICT _OBJ_ID (FK) — a link to the dictionary, the property belongs to, filled in automatically upon its
addition to the dictionary;

e COLUMN_NAME — a name of the table field in the subject scheme of the database (Oracle DBMS
imposes the same restrictions on the field name as the table itself);

e TYPE ID (FK) —property type (see details in section Data types);

e CONTROL_ID (FK) —control element, which will be used by default in the screen forms for input of the
values of this property, to be selected from those offered by the system. For example, for the string
property, it can be string, field or string for input of password hiding the characters;

e STRING_SIZE limits the string length of for TYPE_ID property type, string or text is selected;

e /IS MULTILANGUAGE - a flag indicating if translation is available for that property;

e /S REQUIRED —a flag indicating if the property is mandatory for fill-in;

e DEFAULT_VALUE —a default value, which is inserted automatically in case of creation of new element
of the dictionary.

EEH Table PROP_TRANSLATIONS keeps the localized values of the dictionary:

e OBJECT ID (FK)—alink to localized property of the dictionary;

e VALUE_ID — a dictionary record in the subject scheme of the database, which property is being
localized;

e [ANG _ID (FK) —localization language;

e STRING_VALUE —the field is designed to store localized value not longer than 4,000 characters;

e CLOB VALUE —the field is designed to store localized value longer than 4 000 characters.

EEH The dictionary property can be a link to the other dictionary, the relations of the kind are stored in

the table DICT_TOONEREFS:

e NAME —relation name, defines the name of the property of generated class for the class type, which it
refers to;

e CAPTION —relation name displayed in the screen forms;

e DICT _OBJ_ID (FK) —adictionary, which property is a link to the other dictionary;

e PROP_OBJ_ID (FK) — a property, which is a link to the other dictionary. For the type value of this
property (TYPE_ID), long must be selected;

© 2018 Ultimate 299

ULTRAATE

Developer SOLIn

e REF_DICT_OBJ_ID (FK) —a dictionary, which specified property refers to.

Besides, through DICT_TOONEREFS table, the parent property is set for the tree-type dictionaries. In
that case, DICT_OBJ_ID (FK) and REF_DICT _OBJ_ID (FK) values coincide.

I+ As a result of fill-in of all mandatory attributes and properties in the subject scheme of the database,
anew table TABLE_NAME will be created with primary key /D and fields COLUMN_NAME, which will be
used for storage of data of new dictionary.

Besides, a view is created for each dictionary table, through which all read/write operations are carried
out. The view is necessary for:

e versioning of DBMS scheme;

e support of time zones;

e transparent localization of multilanguage properties of the dictionaries.

|ll Let us consider creation of the goods dictionary by the example.

We describe the attributes and properties of new dictionary "Goods". As a result, the
following metadata are stored in the kernel scheme:

/DICTIONARIES
ID NAME | CAPTION TABLE_NAME CAS%

1 Articles | Articles ARTICLES FALS?

VDICT_PROPERTIES

1D NAME CAPTION DICT_OBJ_ID | COLUMN_NAME ﬁ
1 Name Name 1 NAME

2 ShortName | Short name 1 SHORT_NAME

3 Description | Description 1 DESCRIPTION 8
4 Code Code 1 CODE

5 Price Price 1 PRICE

On their basis, GOODS table is created by the kernel in the subject scheme of the database.

GOODS

e w

NAME
SHORT_NAME
DESCRIPTION
CODE

PRICE

EEE Table LINK_TABLES keeps the attributes, which describe the link table in the subject scheme of the

database:

e NAME —a name of the link table, defines the name of generated class;

e CAPTION - link table name displayed in the screen forms; the value of this attribute is inserted by
defaultin the corresponding field in case of fill-in of dictionary link to it;

e TABLE NAME —table name in the subject scheme of the database.

EH Table LINK_PROPERTIES describes the properties of the link table — in fact, its table fields in the
subject scheme of the database.

e NAME —name of the property, defines the name of the property of generated class;

CAPTION —a name of the link table property displayed in the screen forms;

LINK_OBJ_ID (FK) —alink to the link table, which the property belongs to, filled in automatically upon
its addition to the link table;

COLUMN_NAME —a name of the table field in the subject scheme of the database;

TYPE ID (FK) — property type (see details in section Data types);

© 2018 Ultimate 300

ULTRAATE

Developer SOLIn

e CONTROL_ID (FK) —control element, which will be used by default in the screen forms for input of the

values of this property, to be selected from those offered by the system. For example, for the string

property, it can be string, field or string for input of password hiding the characters;

STRING_SIZE limits the string length of for TYPE_ID property type, string or text is selected;

e |S MULTILANGUAGE - a flag indicating if translation is available for that property;

e /S REQUIRED —a flag indicating if the property is mandatory for fill-in;

e DEFAULT_VALUE - a default value, inserted automatically in case of creation of new element of the
link table;

e /S KEY—aflagindicating that this property is the key one. Each set of key properties of the link table
(marked with IS_KEY flag), only one set of values of its other properties corresponds to. Each link table
must have at least two key properties.

EEH The link table property can be alink to the dictionary, the relations of the kind are stored in the table

LINK_TOONEREFS:

e NAME —relation name, defines the name of the property of generated class for the class type, which it
refers to;

e CAPTION —relation name displayed in the screen forms;

e LINK_OBJ_ID (FK)—a link table, which property is a link to the dictionary;

e PROP_OBJ_ID (FK) —a property of the link table, which is a link to the dictionary. For the type value of
this property (TYPE_ID), long must be selected;

e REF_DICT_OBJ_ID (FK) —a dictionary, which specified property refers to.

I+ As a result of fill-in of all mandatory attributes and properties in the subject scheme of the database,
anew table TABLE NAME will be created with the fields COLUMN_NAME, which will be used for storage
of data of the link table.

B8 Table DICT_LINKTABLES keeps the relations of the dictionary with others using the link tables:

e NAME —name of the link table; defines the name for collection property of generated class;

e CAPTION — a name of the link table displayed in the screen forms, inserted by default from the
corresponding attribute LINK_TABLES, can be modified;

e DICT _OBJ_ID (FK)—alink to editable dictionary, filled in automatically;

e [INK OBJ_ID (FK)—alink table, which the editable dictionary will be bound to;

e PROP_OBJ_ID (FK) — a link table field, which ID (/D) of the properties of editable dictionary will
correspond to.

I+ The link tables have no own interface for data editing, as for instance the elements of the
dictionaries have. In the screen form for editing of the dictionary records, which we bind using the link
tables with others, a tab is created automatically with the name, set in the attribute CAPTION, for which
the relations will be possible to specify for the elements of current dictionary with the elements, set in
the link table LINK_OBJ_ID (FK), and to edit their related variables.

EEH Table DICT_TOMANYREFS describes relations of the dictionary with others through "many-to-many"
relations and their corresponding table in the subject scheme of the database:

e NAME —a name of the link to many, defines the name for the collection property of generated class;
CAPTION —a name of the link to many displayed in the screen forms;

DICT_OBJ_ID (FK) —alink to the dictionary being created (edited), filled in automatically;

TABLE NAME —a name for the tables of links to many in the subject scheme of the database;
COLUMN_NAME — a property (field) of the table of links to many, according to which the dictionary
being created (edited) will be bound to the other;

REF _DICT OBJ_ID (FK) —alink to another dictionary, which that being created (edited) is bound to;
REF_COLUMN_NAME —a property (field) of the table of links to many, which the other dictionary will
be bound to.

© 2018 Ultimate 301

ULTRAATE

Developer SOLIn

I+ As a result of fill-in of all properties in the subject scheme of the database, a new table (of the links to
many) will be created with the name TABLE NAME and two fields COLUMN_NAME and
REF_COLUMN_NAME, referring to the key fields of two dictionaries DICT OBJ ID (FK) and
REF_DICT_OBJ_ID (FK).

The tables of "many-to-many" relations have no own interface for data editing in the same manner as
the link tables. While binding the current dictionary to the links to many with other, we create thus a tab
in its screen form, set in the attribute CAPTION, on which the relations of the records of current
dictionary can be created with the dictionary records REF_DICT OBJ_ID (FK).

Localization

System Ultimate AEGIS® supports multilingualism of dictionaries. It means that property of the
dictionary can have values in one and more languages. For example, item names in the company price
list working with suppliers from Finland can be in the Russian, Finnish and Swedish languages. In this
case the most used language from languages is assigned by default. Its identifier (ID of LANGUAGES
table) is 1.

The dictionary which has multilingual property is considered localizable (it is set by IS MULTILANGUAGE
DICT_PROPERTIES table). Localized values of the dictionary properties (including in language by default)
are stored in PROP_TRANSLATIONS table in the kernel scheme of the database.

All access to the dictionaries that are stored in the application database scheme as, for example,
reading/record operations, are happened through representations. Including it is made also for
implementation of multilingualism.

Localization of the dictionary can be transparent or opaque (it is set by TRANSP_LOCALIZATION property
of the DICTIONARIES table).

Transparent localization

In case of the transparent localization values of the dictionary multilingual properties entered by the
user are registered in the table PROP_TRANSLATIONS in the kernel scheme of the database. Besides, the
last actual property value, regardless of that what language it is entered, is replicated also in the table of
the dictionary in the application database scheme. It allows simplifing search in the change history
considerably.

When the user addresses to the transparent localizable dictionary, he gets access to its representation
where multilingual properties are provided in the user’s language (the user language is defined by the
table field LANG_ID USERS).

LT] When the transparent localization is in the representation covering the dictionary table,

= values of the user language will be always on the place of multilingual property. When
changes are entered into the dictionary (representation) by the user, values of the user
language will be written in the table PROP_TRANSLATIONS. Each field requires execution of
one operator JOIN. Therefore it is necessary to remember that the transparent localization
switching on for the large dictionary can lead to decline in production.

Opaque localization

In case of the opaque localization values of the dictionary multilingual properties entered by the user
are registered in the table PROP_TRANSLATIONS in the kernel scheme of the database. Besides, if
property value was entered in language by default (and only in this case), it is also replicated in the
table of the dictionary in the application database scheme.

When the user addresses to opaque localizable dictionary, he gets access to its representation where
multilingual properties are provided in the language by default.

© 2018 Ultimate 302

Developer

Documents

ULTRAATE

SOLID

The documents consist of the head and one and more table parts, their description is kept in the kernel
scheme of the database in the following tables:
e DOC TYPES —types of documents;
e DOCUMENTS —mandatory (predefined) properties of the heads of documents;
e DOC PROPERTIES —properties of the heads of documents;
e DOC_TOONEREFS —relations of the documents properties with the dictionaries;
e DOC _SUBTYPES —subtypes of documents;
e TABLE PART TYPES —table parts of the documents;
e TBLPART_PROPERTIES — properties of the table parts of documents;
e TBLPART TOONEREFS —relations of the properties of the document table parts with the dictionaries;
e DOC TBLPARTS —relations of the types of documents and table parts;
e PARENT_DOCUMENTS —relations of the parent documents and children documents;

e DOC LINKS —types of the relations of the parent documents and children documents.

Data model looks like as follows:

DOC_SUBTYPES

DOC_LINKS

—‘; ID

F)

ID ‘

‘ NAME

PARENT_DOCUMENTS

7 PARENT_DOC_ID (FK)
7 CHILD_DOC_ID (FK)

VDOC_TOONEREFS

71D

1

CAPTION
DOC_TYPE_OBJ_ID (FK)

VTBLPART_TOONEREFS

NAME
CAPTION
DOC_TYPE_OBI_ID (FK)

ID ‘

NAME
CAPTION

TBLPART OBI_ID (FK)
PROP_OBJ_ID (FK)
REF_DICT_OBJ_ID (FK)

TBLPART_PROPERTIES

D

NAME
CAPTION
TP_TYPE_OBJ_ID (FK)
COLUMN_NAME
TYPE_ID (FK)
CONTROL_ID (FK)
STRING_SIZE
IS_REQUIRED
IS_VISIBLE

DEFAULT VALUE

-—

7 LINK_ID (FK) PROP_OBJ_ID (FK)

\ | REF_DICT_OBJ_ID (FK)
DOCUMENTS \V/DOC_PROPERTIES
71D 71D

DELETED NAME
DOCTYPE_OBJ_ID (FK) jo— CAPTION

CREATOR_ID (FK) —e DOC_TYPE_OBI_ID (FK)
CREATION_DATE COLUMN_NAME
DT_PROCESS TYPE_ID (FK)

e SUBTYPE_OBJ_ID (FK) CONTROL_ID (FK)
VERSION STRING_SIZE
DESCRIPTION IS_MULTILANGUAGE
COMMENTS IS_REQUIRED
TOTALS_LIST DEFAULT_VALUE

VDOC_TBLPARTS
\VDOC_TYPES —— FID
FIDF NAME
CAPTION
NAME DOC_TYPE_OBJ_ID (FK)
CAPTION TBL_TYPE_OBI_ID (FK)
TABLE_NAME HANDLER_OBJ_ID (FK)

HANDLER_OBI_ID (FK)

SOFT_DELETION

VTABLE_PART_TYPES

D

.—|_4;

NAME
CAPTION
TABLE_NAME

Tables DOCUMENTS, DOC_LINKS and PARENT _DOCUMENTS of the data model have no prefix "V". They
are not views because they are not versioned. For example, the properties of the document head stored

© 2018 Ultimate 303

ULTRAATE

Developer SOLIn

in the table DOCUMENTS are similar for all types of documents, they are predefined by the developers
of Ultimate AEGIS® system and are unavailable for editing to the application developer.

Let us dwell on each of the tables in details.

The document type assigns a set of fields of the document head, set of its table parts and set of
handlers.

EEE Table DOC_TYPES keeps the attributes, which describe the document type and its table in the subject

scheme of the database:

e NAME —a name of the document type, defines the name of generated class;

e CAPTION —document type name displayed in the screen forms, e.g. for the document type Invoice it
can be "Receipt" or "Receipts note";

e TABLE NAME —table name in the subject scheme of the database. For convenience of work with all
tables of the document types, prefix "D_" will be added, for instance, for the value TABLE_ NAME —
INVOICE name of the table in the database will be D_INVOICE;

e HANDLER OBJ_ID (FK) —the handler of events for this document type (before creation, before saving,
after saving, before deletion, after deletion), is created as may be necessary.

EEH Table DOCUMENTS keeps the values predefined by the developers of the set of fields of document
type; besides, the names of the fields define the names of the properties of generated class, as well as
the fields of the table of document type in the subject scheme of the database:

e DELETED —a flagindicating the document is deleted (false —deleted, true —not);

e DOCTYPE OBJ ID (FK) — a link to the document type, which the property belongs to, filled in
automatically;

e CREATOR_ID (FK) —document creator (id of system user), filled in automatically;

e CREATION_DATE —document creation date, filled in automatically;

e DT PROCESS —document processing date;

e SUBTYPE_OBJ_ID (FK) —document subtype;

e VERSION — ancillary box, filled in automatically using incrementing counter upon each saving of the
document. It is used at concurrent editing of the document by two users in order not to let another to
save the document after making changes to it by the first one;

e DESCRIPTION — automatically generated description of the document of type "{document type} No.
{document number} dated {document creation date}";

e COMMENTS —document description entered manually;

e TOTALS LIST—allist of transactions automatically generated by the transaction processor based on the
document.

EEH If the application developer is short of predefined properties, comprising the head of any new

document type, own properties can be described in the table DOC_PROPERTIES:

o NAME —name of the property, defines the name of the property of generated class;

e CAPTION —a name of the document type property displayed in the screen forms;

e DOC TYPE OBJ_ID (FK) — a link to the document type, which the property belongs to, filled in
automatically when it is added,;

e COLUMN_NAME —a name of the table field in the subject scheme of the database;

e TYPE ID (FK) —property type (see details in section Data types);

e CONTROL ID (FK) —control element, which will be used by default in the screen forms for input of the
values of this property, to be selected from those offered by the system. For example, it can be string
or field for the string property;

e STRING_SIZE limits the string length if for TYPE_ID property type string is selected,;

o IS MULTILANGUAGE —a flag indicating if translation is available for that property;

e /S REQUIRED —aflagindicating if the property is mandatory for fill-in;

© 2018 Ultimate 304

ULTRAATE

Developer SOLIn

e DEFAULT VALUE — a default value, which is inserted automatically in case of creation of new
document.

EEH The document property can be a link to the dictionary, the relations of the kind are stored in the table

DOC TOONEREFS:

e NAME —relation name, defines the name of the property of generated class for the class type, which it
refers to;

e CAPTION —relation name displayed in the screen forms;

e DOC _OBJ_ID (FK) —document type, which property is a link to the dictionary;

e PROP_OBJ_ID (FK) — a property of the document type, which is a link to the dictionary. For the type
value of this property (TYPE_ID), long must be selected;

e REF_DICT_OBJ_ID (FK) —adictionary, which specified property refers to.

I+ As a result of filling in of all mandatory attributes and properties in the subject scheme of the
database, a new table D TABLE NAME will be created with primary key /D, all fields from the table
DOCUMENTS (IS_ALIVE, BALANCE_ID (FK), DOCTYPE_OBJ_ID (FK) etc.) plus the fields COLUMN_NAMIE,
which will be used for storage of the head data of all documents corresponding to created type.

|!I Let us consider creation of document type "Income" by the example.

As aresult of description of the attributes and properties of new document type in the kernel
scheme, in the subject scheme of the database, table D_INVOICE will be created:

VDOC_TYPES D_INVOICE
1D NAME | CAPTION TABLE_NAME ? /1D
1 Invoice | Invoice D_INVOICE E IS_ALIVE
BALANCE_ID (FK)
DOCTYPE_OBI_ID (FK)
\/DOC_PROPERTIES CREATOR_ID (FK)
DT_CREATED
D NAME CAPTION DOC_TYPE_OBJ_ID | COLUMN_NAME 1\) DT_PROCESS
1 Company Company 1 COMPANY SUBTYPE_OBJ_ID (FK)
2 |Bilmo Bill to 1 BILL_TO VERSION
3 | shipTo Ship to 1 SHIP_TO) DESCRIPTION
“ Total Total amount 1 TOTAL _?8%?;?_3_
hippi ippi ippi —
5 Shipping Shipping amount | 1 Shipping COMPANY
BILL_TO
SHIP_TO
TOTAL
SHIPPING

LT] The data of the subject area is stored in the subject scheme of the database. That is the heads

l of all documents created in the system will be stored in the tables of the subject scheme
corresponding to their type, e.g. head of the orders in the table D_ORDERS, head of invoices in
the D_INVOICE, head of reserves in D_RESERVE. But at the same time, all common fields of the
heads of all documents, irrespective of their type, will be also replicated in the kernel scheme
into the table DOCUMENTS.

EEH Table DOC_SUBTYPES describes the subtypes of documents:
e CAPTION —a name of the document subtype displayed in the screen forms;
e DOC TYPE OBJ_ID (FK)—alink to the document type, which the subtype corresponds to.

EEH Table TABLE PART TYPES keeps descriptions of the table parts of documents and their tables in the

subject scheme of the database

e NAME —a name of the table part type, defines the name of string class of the table part;

e CAPTION —a name of the table part tab displayed in the screen forms;

e TABLE_NAME —table name in the subject scheme of the database. For convenience of work with all
tables of the table parts, prefix "TP_" will be added, e.g. for the value TABLE NAME — RESERVE table
name in the database will be TP_RESERVE.

© 2018 Ultimate 305

ULTRAATE

Developer SOLIn

EEH Table TBLPART_PROPERTIES describes the properties of the table parts of documents — in fact, the

table fields of the table part in the subject scheme of the database:

e NAME — the table part property name defines the name of the property of string class of the table

part;

CAPTION —a name of the table part property displayed in the screen forms;

e TP_TYPE OBJ ID (FK) — a link to the table part type, which the property belongs to, filled in
automatically when it is added,;

e COLUMN_NAME —a name of the table field in the subject scheme of the database;

e TYPE ID (FK) —property type (see details in section Data types);

e CONTROL_ID (FK) —control element, which will be used by default in the screen forms for input of the
values of this property, to be selected from those offered by the system. For example, it can be string
or field for the string property;

e STRING_SIZE limits the string length if for TYPE_ID property type string is selected;

e /S REQUIRED —aflagindicating if the property is mandatory for fill-in;

e /S VISIBLE —a flag indicating the need to display the property in the table part of the document screen
form, itis used for hiding of the ancillary boxes.

e DEFAULT VALUE —a default value, which is inserted automatically in case of creation of new element
of table part content.

EEH The document table part property can be a link to the dictionary, the relations of the kind are stored

inthe table TBLPART_TOONEREFS:

e NAME — relation name, defines the name of the string class property of the table part of class type,
which it refers to;

e CAPTION —relation name displayed in the screen forms;

e TBLPART _OBJ_ID (FK) —document table part, which property is a link to the dictionary;

e PROP_OBJ_ID (FK) —table part property, which is a link to the dictionary. For the type value of this
property (TYPE_ID), long must be selected;

e REF _DICT _OBJ_ID (FK) —adictionary, which specified property refers to.

In addition to the properties of table parts described by the application developer, there are also

properties predefined by the system developers in the same manner as for the document head. They

will be added into each table of new type of the table part created in the subject scheme of the

database:

e /D—record ID (primary key), filled in automatically using incrementing counter;

e DOCUMENT_ID (FK) —alink to the document, which the table part is bound to, filled in automatically;

e TP_ENTRY ID (FK) — code of table part entry into the document, corresponds to the record in
DOC _TBLPARTS;

o |S_ALIVE—-aflagindicating if the content of the table partis deleted (false —deleted, true —not);

e FLAG — a flag available for editing to the end user in the form of checkbox element in the document
screen form.

I+ As a result of fill-in of all mandatory attributes and properties in the subject scheme of the database,
a new table TP_TABLE_NAME will be created with mandatory fields plus the fields COLUMN_NAMIE,
which will be used for storage of data of new type of the table part of documents.

EEH Table DOC_TBLPARTS describes and stores relations of the types of documents and table parts:

o NAME —relation name, defines the name of the collection of string class instances of the table part;

e CAPTION — a name of the table part displayed in the screen forms, inserted by default from the
corresponding attribute TABLE_PART TYPES, can be modified;

e DOC_TYPE _OBJ_ID (FK) —a link to the document type, filled in automatically;

e TBL TYPE OBJ _ID (FK)—alink to the document table part type, which is bound to this document type;

e HANDLER OBJ_ID (FK) — transaction processor for particular type of the table part of this type of
documents;

© 2018 Ultimate 306

ULTRAATE

Developer SOLIn

e SOFT_DELETION —a flag indicating the need in soft deletion of the table part content of the type. If set
to value true, the content of corresponding table part of this type of documents will remain in the
database and be available for restoration in case of deletion. Generally, used for table parts with
manually entered content; for automatically generated ones, it is recommended to set the flag to
value false.

EEE Table PARENT_DOCUMENTS keeps the relations of parent documents and children documents:
PARENT DOC ID (FK) —alink to the parent document;

CHILD_DOC_ID (FK) —a link to the child document;

LINK_ID (FK) —relation type.

FEH Table DOC_LINKS keeps the types of relations of parent documents and children documents:
NAME — relation type name, serves for description of relation mechanism. For example, "Delivery
note is generated on the basis of the order".

Totals

Description of totals is stored in the kernel scheme of database in the following tables:
TOTALS —totals;

TOTAL DIMENSIONS —total dimensions;

TOTAL VARIABLES —total variables;

TOTAL _DRIVERS —drivers of the totals.

Data model looks like as follows:

VTOTAL_VARIABLES VTOTALS VTOTAL_DIMENSIONS
F1D 4(ID £1D
NAME NAME NAME
CAPTION CAPTION CAPTION
TOTAL_OBJ_ID (FK) - BASE_TABLE_NAME TOTAL_OBJ_ID (FK)
COLUMN_NAME IS_DOUBLE_ENTRY COLUMN_NAME
IS_OPERATIONAL DRIVER_OBI_ID (FK) REF_DICT_OBJ_ID (FK)
E J HANDLER_OBJ_ID (FK) IS_OPERATIONAL
vy
/TOTAL_DRIVERS
NAME
DESCRIPTION

HANDLER_OBJ_ID (FK)
. A

Before proceeding with the totals description, let us dwell on their storage structure once more (it was
detailed by the example in the first chapter). Every total is implemented using five tables, two of which
are operational and two analytical ones. In the operational table, the information comes immediately
upon transaction record in the database, in analytical tables, it comes by the result of totals calculation.

The tables can be differentiated by prefixes:

e TB tablename —operational summary table (balance table), in which only one set of summary values
of variables is kept for each set of dimensions;

e TR _tablename — operational detailed table (transactions table), in which all transactions are kept.
Having summed their variables for a certain set of dimensions, a summary value can be produced,
which is keptin TB_tablename;

e TD_tablename — analytical detailed table (detailed transactions table), in which the transactions are
kept, the same as in TR_tablename, but already calculated. To be filled in by the results of totals
calculation;

e TT tablename — analytical summary table (detailed transactions balance table), in which only one set
of summary values of variables from the table TD_tablename is kept for each set of dimensions.

© 2018 Ultimate 307

ULTRAATE

Developer SOLIn

EH Table TOTALS keeps the attributes, which describe the total and its tables in the subject scheme of

the database:

e NAME —a name of the total defines the name of generated class;

e CAPTION —total name displayed in the screen forms;

e BASE TABLE NAME - a name of operational detailed (RM) table of the total in the subject scheme of
the database.
During creation of the total, the application developer creates only one common name of its tables in
the subject scheme of the database — TABLE_ NAME. On its basis, the names of all five tables of the
total will be defined by addition of corresponding prefix;

e /S DOUBLE ENTRY - a flag indicating if the total is balance one. if set to value true, the double-entry
rule will apply in case of changes made to this total;

e DRIVER_OBJ_ID (FK) —driver of the total;

e HANDLER OBJ_ID (FK) —handler of events for this total, it is created as may be necessary.

B Table TOTAL DIMENSIONS keeps descriptions of the total dimensions —in fact, the fields of its
tables:

e NAME —a name of the dimension, defines the name for the property of generated class;

CAPTION —dimension name displayed in the screen forms;

TOTAL OBJ_ID (FK) —alink to the total, which the dimension belongs to, filled in automatically;
COLUMN_NAME —a name of the table field in the subject scheme of the database;

REF_DICT_OBJ_ID (FK) —alink to the Dictionary, which elements represent the total dimension;

IS _OPERATIONAL —aflag indicating if the dimension is operational. if set to value true, the dimension
value will be always filled in when the data are recorded into the total table. For analytical dimension
(aflagis set to value false), the value can be ignored and filled in only in case of totals calculation.

EEE Table TOTAL_VARIABLES keeps descriptions of the total variables — if fact, the fields of its tables:
NAME —a name of the variable, defines the name for the property of generated class;

CAPTION —variable name displayed in the screen forms;

TOTAL OBJ_ID (FK) —alink to the total, which the variable belongs to, filled in automatically;
COLUMN_NAME —a name of the table field in the subject scheme of the database;
IS_OPERATIONAL —a flag indicating if the variable is operational. if set to value true, the variable value
will be always filled in when the data is recorded into the total table. For analytical variable (a flag is
set to value false), the value can be ignored and filled in only in case of totals calculation.

All created variables of the totals have decimal type.

In addition to the dimensions and variables, described by the application developer, every totals has

also the system properties predefined by the developers:

e DELTA NO —transaction number;

e DEITA DUB_NO - additional number of the transaction, used during record of the calculated
transactions, which can be split into several components;

e PAIR TOTAL ID (FK) — a link to the other total, which the changes were made to with the same
transaction in case of application of double-entry rule;

e HANDLER TOTAL OBJ_ID (FK) —transaction processor, generated by this transaction;

e VERSION_ID (FK) —version of the transaction processor;

e LOT_NO — lot number, formed on the basis of the document processing date, document number and
transaction number;

e DOCUMENT _ID (FK) —alink to the document, that originated the transaction;

e DT_PROCESS —processing date for this document.

© 2018 Ultimate 308

ULTRAATE

Developer SOLIn

The below table shows entry of described predefined properties into the tables of the total in the
subject scheme of the database:

entry of the field into the total table
TR B D TT

DELTA NO +

DELTA_DUB_NO

LOT_NO

DOCUMENT_ID (FK)

DT_PROCESS

PAIR_TOTAL_ID (FK)

HANDLER_TOTAL_OBJ_ID (FK)

VERSION_ID (FK)

table field

+ [+ [+ |+ |+ |+

+ |+ |+ |+ |+

I+ As a result of filling in of all mandatory attributes and properties in the subject scheme of the
database, five new tables will be created TR TABLE NAME, TB_TABLE NAME, TD TABLE NAME and
TT_TABLE NAME with mandatory fields, according to the above table, plus the fields COLUMN_NAME of
dimensions and variables, which will be used for storage of data of new total.

© 2018 Ultimate 309

Developer

ULTRAATE

SOLID

7]

Let us consider creation of the total "Remaining stock at the warehouse".

the subject scheme of the database 5 corresponding tables will be created:

TOTALS

1D NAME

CAPTION

BASE_TABLE_NAME

IS_?

1 BalancesWh

Warehouse balances

BALANCES_WH

1

VTOTAL_DIMENSIONS

ID NAME CAPTION TOTAL_OBJ_ID | COLUMN_NAME 9

1 Good Good 1 GOOD

2 Warehouse | Warehouse 1 WAREHOUSE
TOTAL_VARIABLES

ID NAME CAPTION TOTAL_OBJ_ID | COLUMN_NAME ?

1 Quantity Quantity 1 QUANTITY

2 Amount Amount 1 AMOUNT

TB_BALANCES WH

GOOD
WAREHOUSE
QUANTITY
AMOUNT

TR_BALANCES_WH

~
DELTA_NO

DOCUMENT_ID (FK)
DT_PROCESS
PAIR_TOTAL_ID (FK)

HANDLER_TOTAL_OBJ_ID (FK)

VERSION_ID (FK)
GOOD
WAREHOUSE
QUANTITY
AMOUNT

TD_BALANCES_WH

DELTA_NO
DELTA_SUB_NO
LOT _NO
DOCUMENT_ID (FK)
DT_PROCESS
PAIR_TOTAL_ID (FK)
GOOD
WAREHOUSE
QUANTITY
AMOUNT

TT_BALANCES_WH

LOT_NO
GO0D
WAREHOUSE
QUANTITY
AMOUNT

EEH Table TOTAL DRIVERS keeps descriptions of the drivers of the totals:
e NAME —a name for the driver of the total;

e DESCRIPTION —driver name displayed in the screen forms;
e HANDLER OBJ_ID (FK)—driver handler.

As aresult of description of the attributes and properties of new total in the kernel scheme, in

© 2018 Ultimate

310

ULTRAATE

Developer SOLIn

Users

The kernel of Ultimate AEGIS® system already has required procedures for authorization and verifying
user rights.

Information on users is stores in the scheme of the database kernel in the form of following tables:

USERS SESSIONS USER_GROUPS
71D 71D F1D _
LOGIN APP_SERVER_ID (FK) NAME
NAME START TIME PARENT ID (FK)
PASSWORD USER_ID (FK)
IS_LOCKED LOGGED_USER_ID (FK)
TIME_OFFSET MACHINE_NAME
ROLE_ID (FK) 0S_USER_NAME
GRODP 1D (1) L USER_GROUPS_TRL
LANG_ 1D (FK) # ANCESTOR_ID (FK)
DEFAULT PRINTER_ID (FK) 7 DESCENDANT _ID (FK)
UI_TEMPLATE_ID (FK) — USER SETTINGS
BALANCE_ID (FK) = ANCESTOR_LEVEL
MUST_CHANGE_PASSWORD 7 KEY { DESCENDANT _LEVEL ‘
INFINITE_PASSWORD_LIFETIME 7 SAVED_NAME
PASSWORD_LIFETIME_ DAYS 7 USER_ID (FK)
LAST_PASSWORD_CHANGE
L DATA ‘ UI_TEMPLATES
71D |
DEFAULT_SETTINGS
(7 KEY ‘ ’—[NAME
DATA
L DATA ‘ LANG_ID (FK)

EEH USERS table contains the data on users:

e LOGIN —login to enter the system;

e NAME —name of user used by the system for calling the user;

e PASSWORD —password hash sum, under which the sign-in is carried out in connection with the login;

e |S_LOCKED —flagindicating that the user account is locked; if true, log-in is impossible;

e TIME_OFFSET—user's time zone;

e ROLE ID (FK)—user's role;

e GROUP_ID (FK) —group that the user is included to;

e [ANG _ID (FK) —interface language;

e DEFAULT_PRINTER_ID (FK) —default printer;

e Ul _TEMPLATE ID (FK)—user interface template;

e BALANCE ID (FK) — balance code used to store data on several companies in a single database. The
balance code specified will be provided automatically, if useris allowed to select it;

o MUST _CHANGE_PASSWORD —flag indicating that it is needed to change password the next time the
userlogsin;

o INFINITE_PASSWORD_LIFETIME —flag indicating that the password lifetime is infinite (true — password
lifetime infinite, false —finite);

e PASSWORD LIFETIME _DAYS — number of days that the password lifetime is limited to; used together
with the INFINITE_PASSWORD _LIFETIME flag, if setin false;

o [AST PASSWORD CHANGE - date of last password change. This is used (together with
PASSWORD_LIFETIME DAYS) in calculation of a date, when the user will be offered to change his
password, while logging in.

EEH Users are arranged in groups in a tree-like structure; description of the structure is in the
USER_GROUPS table:

e NAME —name of group;

e PARENT_ID (FK) —link to parent group.

© 2018 Ultimate 311

ULTRAATE

Developer SOLIn

EE For ease of reference, the USER_GROUPS table's contents is automatically copied to the
USER_GROUPS_TRL table, which contains a list of all children for each parent:

e ANCESTOR_ID (FK) —link to parent group;

e DESCENDANT_ID (FK) —link to child group;

o ANCESTOR _LEVEL —parent group level;

e DESCENDANT LEVEL —child group level.

|l| How to fill in the USER_GROUPS_TRL table is shown below:

USER_GROUPS

ID NAME PARENT _ID
1 Moscow NULL =l Moscow
2 Main office 1 i--&-- Main office
3 Sales department 2 ¢t :-Sales department
4 Warehouse 2 . ¢ i.Warehouse
5 Warranty department | 2 .o .Warranty department
3 Accounts department | 2 - Accounts department
7 Retail store 1 i..3].- Retail store
L e :

USER_GROUPS_TRL
ANCESTOR_ID | DESCENDANT_ID | ANCESTOR_LEVEL | DESCENDANT_LEVEL

S\JNMNI—‘HHHHI—\
E\MHWG\W-&WHN
gmmmn—w—n—n—w—n—r
gwwwwwwwmm

EEH Ul_TEMPLATES stores configuration of user interfaces (menu structure and sets of client application
screen forms), which is as flexible-adjusted as one may wish:

e NAME —name of user interface;

e DATA —interface configuration;

e [ANG_ID (FK) —interface language.

EEH USER_SETTINGS table stores the settings of client application screen forms (unlike the Ul_TEMPLATES
table, this stores not a list of screen forms, but their configuration, e. g., arrangement and size of
windows, a list and succession of columns, etc.):

e KEY—key; as arule, thisis a screen form name;

e SAVED_NAME —name of settings; usually, used to describe their logic;

e USER_ID (FK) —user, who made the settings;

e DATA —screen form settings.

EEH DEFAULT _SETTINGS stores the default settings of screen forms; if no changes were made to the
settings by user, they are loaded from this table, not from USER_SETTINGS:

e KEY—key; as arule, thisis a screen form name;

e DATA —screen form settings.

EEH When authorizing a user, a session is created; the session parameters are stored in the SESSIONS
table:

e APP_SERVER_ID (FK) —application server that the client application worked with;

e START _TIME —session start time;

e USER_ID (FK) —user authorized (his login and password were used);

© 2018 Ultimate 312

ULTRAATE

Developer SOLIn

e [OGGED_USER_ID (FK) — user, which login was entered when signing in with the option "Sign in with a
different account" (details on this option is in the "Starting application" section of the user's manual).

e MACHINE_NAME — name of computer in the operating system, on which the client application was
launched;

e OS USER NAME — user name, under which he signed in to the operating system, under which the
client application was launched.

User permissions

The user permissions are created using the roles, permissions and predicates:

e By means of roles access to system objects is provided: to dictionaries, results, handlers, documents of
specific subtype, modules of screen logic and printers. The roles are arranged as follows:

= permissions and predicates are bound to roles;

= the roles are structured in the tree-type dictionary;

= the tree of roles has structure many to many: the role can have many descendants and many
parents;

= the parent role has all permissions provided by the child role including permissions and
predicates.

e The predicates are used if access provided with the role to the elements of the objects like dictionary,
document or total should be limited. If these limitations can be expressed with SQL-query — a
predicate will apply to them. For example, the sales manager should be provided with a possibility to
work only with retail clients but not with wholesale and corporate ones.

e By permissions situations are regulated, when it is necessary to limit access to any actions: there is a
permission —it is possible to perform an action, there is no permission —it is impossible. In fact, these
are control points in the program code, in which the user is checked for having corresponding
permissions.

© 2018 Ultimate 313

Developer

ULTRAATE

SOLID

A model of data implementing the mechanisms of the user permissions looks like as follows:

ROLE_PERMISSIONS_EXT
7 PERMISSION_ID (FK) ‘

7 ROLE_ID (FK)

Bl

)

ROLE_PREDICATES_EXT

7 PREDICATE_ID (FK)
7 ACCESS_OBJ_ID (FK)
7ROLE_ID (FK)

—

OPERATION J

PERMISSIONS ROLE_PERMISSIONS
=y
71D / PERMISSION_ID {FK)
/ROLE_ID (FK)
NAME
% | REVOKED |
PREDICATES
7D | rowe prepicaTES
/ PREDICATE_ID (FK)
NAME T /ROLE_ID (FK)
DESCRIPRION / OPERATION_ID (FK)
ACCESS_OBJ_ID (FK)
saL | REVOKED
ACC_OPERATIONS iy
71D T DICT_PERMISSIONS
FDICT_OBJ_ID (FK)
DATA ~| [~ 7 ROLE_ID (FK)
/ OPERATION_ID (FK)
| REVOKED |
TOTAL_PERMISSIONS
ROLES [I— / TOTAL_OBJ_ID (FK)
AF. D]r 7 ROLE_ID (FK)
NAME | REVOKED |
IS_FOLDER LA
DOC_ST_PERMISSIONS
ROLE_TREE 7DOC_ST_OBJ_ID (FK)
7 PARENT _ID (FK) —|9/ ROLE_ID (FK)
7 CHILD_ID (FK) 7 OPERATION_ID {FK)
J | REVOKED |
ROLE_TREE_EXT
/ DESCENDANT_ID {FK] /' HANDLER_OBI_ID {FK]
)

USERS

-

/ ROLE_ID (FK)

REVOKED

]

/1D

LOGIN

NAME

PASSWORD

IS_LOCKED

TIME_OFFSET

ROLE_ID (FK)

GROUP_ID (FK}

LANG_ID (FK)
DEFAULT_PRINTER_ID (FK)
UI_TEMPLATE_ID (FK)
BALANCE_ID (FK)
MUST_CHANGE_PASSWORD
INFINITE_PASSWORD_LIFETIME
PASSWORD_LIFETIME_DAYS
LAST _PASSWORD_CHANGE

A

[T

PRINTERS_PERMISSIONS
/ ROLE_ID (FK) |

7 PRINTER_ID (FK)

REVOKED I

.
b

OBJECTS

DICT_PERMISSIONS_EXT
7 DICT_OBJ_ID (FK) ‘

7 ROLE_ID (FK)

A

OPERATIONS ‘

TOTAL_PERMISSIONS_EXT

/TOTAL_OBJ_ID (FK)
7 ROLE_ID (FK)

DOCST_PERMISSIONS_EXT
e 7 DOC_ST_0BJ_ID (FK) ‘

7 ROLE_ID (FK)

| operaTIONS |

HANDLER_PERMISSIONS_EXT
7 HANDLER_OBJ_ID (FK)

7 ROLE_ID (FK)
L

ROLE_MODULES

7 ROLE_ID {FK)
MODULE_OBJ_ID (FK)

L REVOKED ‘

r 1D

| TYPE_ID (FK)

EEH System table ACC_OPERATIONS keeps a list of operations available for system objects:
e /|D—operation ID, it is also its number in the bit mask;

© 2018 Ultimate

314

ULTRAATE

SOLID

Developer

e NAME —operation name.

| ' I A list of operations keptin the table ACC_OPERATIONS:
| |

id

1

2

4

8

operation

read

add

modify

delete

Operation ID is the number of its bit in the bit mask at the same time. If the operation on the
object is set with a bit mask, e.g. all specified operations, except for deletion, are permitted
forits value "0111", and the value "0001" grants read access only.

Roles

EEH Table ROLES keeps the list of roles:

e NAME —role name;

e /S FOLDER —aflagindicating if the role is folder. The folders are intended for convenience of the roles
view and are used solely for their grouping. The functionality of the folder roles is restricted to a
number of prohibitions:

= apermit for access to the object cannot be issued using the folder-role;
= afolder-role cannot be assigned to the user;
= afolder-role cannot be made a child for other role if not the folder either.

EE The roles are arranged into the tree structure, which description is kept in the table ROLES_TREE:
e PARENT _ID (FK) —parentrole;
e CHILD ID (FK) —child role.

EEH For convenience of work, the content of table ROLES_TREE is replicated automatically into the table
ROLES_TREE_EXT, where alist of all children is kept for each parent:

e ANCESTOR_ID (FK) —alink to the parent role;

e DESCENDANT_ID (FK) —a link to the child role.

The roles represent essentially a combination of users, united with similar rules. That is, the same role is
designed for the users with similar functionality. The parent role provides the user also with all the
permissions set with its children roles. For example, the roles defining the functionality of
subordinates, being the children to the department head role, provides them with a possibility to
perform all operations available for them:

=I--Department Manager
. i--Sales manager
i--Account manager
:--Global account manager
i+~ Accounting manager
i Applicant
Therefore, a task for defining of user permissions with high-level parent role will reduce also to defining
the permissions of all of its children roles. The more levels are present in the roles tree, the more
labour-intensive task it is. For optimization of these queries, the very table ROLES_TREE_EXT, is
designed, where all child roles are specified explicitly for each role, irrespective of their nesting level.
The mechanisms for user permissions checks, implemented with the kernel, work just with such
optimized tables, which are filled in automatically, they can be differentiated by suffix EXT in the
name.

© 2018 Ultimate 315

ULTRAATE

Developer SOLIn

Permissions

EEE Table PERMISSONS keeps a list of permissions:

e /D —permission ID, according to which the checking is carried out at the control point of the program
code;

o NAME —permission name.

EEH Table ROLE_PERMISSONS keeps a list of permissions bound to roles:

e PERMISSON_ID (FK) —a permission, being bound to the role;

e ROLE ID (FK)—arole, which the permitis bound to;

e REVOKED — revocation of permission binding to the role. It is used for revocation of permission
binding derived by the parent role from the child.

The parent role has all permissions provided with its children roles. The same refers to permissions. But

the situations occur when the child role has a permission but the parent role does not need it. For

example, the storekeeper role has bound permission for performance of dispatch of goods from the

storehouse. At the same time, it is a child of the role of the storehouse coordinator. But the storehouse

coordinator is not an accountable officer and does not have the right to do such shipment. The

storehouse coordinator parent role can be divested of such permission using two methods:

e to take the permission away from the storekeeper child role but its users will be then divested of
corresponding rights;

e to bind the permission also to the parent role but set REVOKED property for this relation to value true,
the child role will then have this permission and the parent role will not.

' In the same manner as parent role has permission of its children roles, it has revocations of
| their permissions too.

For example, while binding a permission to the role of Junior Subordinate, we issue it thus to
the parent roles too —Senior Subordinate and Department Head:

=-- Department Manager
i--1-- Senior Subordinate
: i~ Junior Subordinate

Having revoked this permission for the role of Senior Subordinate, we revoke it thus for the
Department Head too.

EEH For convenience of work, the content of table ROLE_ PERMISSIONS is replicated automatically into the
table ROLE_PERMISSONS_EXT, where a list of all role permissions specified explicitly is kept for each
role, taking into account that the parent role has permissions of the children roles if they are not
revoked for it with the REVOKED property:

e PERMISSION_ID (FK) —alink to the permission;

e ROLE ID (FK) —alink to the role.

© 2018 Ultimate 316

ULTRAATE

SOLID

Developer

7]

Having bound a permission to the role of Junior Subordinate, we add thus one record into the
table ROLE_PERMISSIONS and three records into the table ROLE_PERMISSIONS_EXT:

ROLES PERMISSIONS
‘ 1D | NAME IS_FOLDER | ID | NAME |
Department Manager NULL LE/@",/J
Senior Subordinate NULL
Junior Subordinate NULL
--._____._--""'_'_._-_

--Department Manager
i Senior Subordinate
:-Junior Subordinate

ROLE_PERMISSIONS
PERMISSION_ID ROLE_ID

ROLE_PERMISSIONS_EXT
PERMISSION_ID ROLE_ID

REVOKED

i L e —p 3
1 1
T~

Having revoked this permission for the role of Senior Subordinate, we revoke it thus for the
Department Head too, while adding one more record into the table ROLE_PERMISSIONS and
having deleted two records in the table ROLE_PERMISSIONS_EXT:

ROLE_PERMISSIONS ROLE_PERMISSIONS_EXT

PERMISSION_ID ROLE_ID REVOKED PERMISSION_ID ROLE_ID
1 3 0 1 3

Predicates

EEH Table PREDICATES keeps a list of predicates:

e NAME —predicate name;

e DESCRIPTION — predicate description;

e ACCESS OBJ _ID (FK)—alink to the object, the access to which is limited by the predicate;
e SQL-SQL-query, which limits access.

EEH Table ROLE_PREDICATES keeps the list of predicates bound to the roles:

e PREDICATE_ID (FK) —predicate, being bound to the role;

e ROLE ID (FK)—arole, which the predicate is bound to;

e OPERATION_ID (FK) —an operation, which can be performed on elements of the object, the access to
which is limited by the predicate;

e REVOKED — revocation of predicate binding to the role. It is used for revocation of predicate binding
derived by the parent role from the child.

The role, which the predicate is bound too, must have permissions to the object, the access to which is
limited by this predicate. For example, if the user needs to be provided with limited access to the
contractors' dictionary, the following is required:

e to provide this user role with access to the contractors' dictionary;

e to create a predicate imposing limitations on access to the contractors' dictionary;

e to bind it to the user'srole.

Furthermore, the operation, which the limitations are imposed on, must be permitted for the role on
this object. For example, binding of the predicate, which imposes limitations on the operation for

© 2018 Ultimate 317

ULTRAATE

Developer SOLIn

deletion of the contractors' dictionary records, to the role, which is granted only with read access,
addition and modification of the records of this dictionary, will be ineffective since an attempt will be
made to limit access for operation, which is not permitted anyway.

EEH For convenience of work, the content of table ROLE _PREDICATES is replicated automatically into the

table ROLE_PREDICATES_EXT, where a list of all role predicates specified explicitly is kept for each role,

taking into account that the parent role has predicates of the children roles if they are not revoked for it

with the REVOKED property:

e PREDICATE _ID (FK) —alink to the predicate;

e ACCESS OBJ_ID (FK) —a link to the object, the access to which is limited by the predicate;

e ROLE ID (FK)—alink to the role;

e OPERATIONS — a bit mask, containing the list of operations, which can be performed on the object
elements, the access to which is limited by the predicate.

All of previously described properties of the permissions are executed for the predicates too:
e the parent role obtains the same predicates as its children roles;
e revocation of the predicate for the child role revokes it for the parent too.

Permissions to the dictionaries

EEH Table DICT_PERMISSIONS keeps the list of dictionary operations permitted for the roles:

e DICT _OBJ_ID (FK) —adictionary, access to which is given by the role;

e ROLE ID (FK) —alink to the role;

e OPERATION_ID (FK) —an operation, which can be performed on a dictionary;

e REVOKED —revocation of the operation of the role on a dictionary. It is used for revocation of access
derived by the parent role from the child.

EEH For convenience of work, the content of table DICT_PERMISSIONS is replicated automatically into the

table DICT PERMISSIONS EXT, where a list of all available operations on the dictionaries specified

explicitly is kept for each role, taking into account that the parent role has access permissions of the

children roles if they are not revoked for it with the REVOKED property:

e DICT _OBJ_ID (FK) —adictionary, access to which is given by the role;

e ROLE_ID (FK) —alink to the role;

e OPERATIONS — a bit mask, containing the list of operations, which can be performed on a dictionary,
the access to which is given by the role.

Permissions to the totals

EEH Table TOTAL _PERMISSIONS keeps the list of totals available for the roles:

e TOTAL OBJ_ID (FK) —atotal, the access to which is given by the role;

e ROLE ID (FK)—alink to the role;

e REVOKED —revocation of access to the total for the role. It is used for revocation of access derived by
the parent role from the child.

EEH For convenience of work, the content of table TOTAL PERMISSIONS is replicated automatically into
the table TOTAL PERMISSIONS EXT, where a list of all available totals specified explicitly is kept for
each role, taking into account that the parent role has access permissions of the children roles if they are
not revoked for it with the REVOKED property:

e TOTAL OBJ_ID (FK) —atotal, the access to which is given by the role;

e ROLE_ID (FK) —alink to the role.

© 2018 Ultimate 318

ULTRAATE

Developer SOLIn

Permissions to the documents

EEH Table DOC_ST_PERMISSIONS keeps the list of operations on the documents of specified subtype,
which are permitted for the roles:

DOC ST OBJ_ID (FK) —a subtype of the documents, the access to which is given by the role;

ROLE ID (FK) —a link to the role;

OPERATION_ID (FK) — an operation, which can be performed on a document of the subtype;

REVOKED —revocation of the operation on the subtype document for the role. It is used for revocation
of access derived by the parent role from the child.

EEH For convenience of work, the content of table DOC ST PERMISSIONS is replicated automatically into

the table DOC ST PERMISSIONS EXT, where a list of all available operations on the documents of

subtypes specified explicitly is kept for each role, taking into account that the parent role has access

permissions of the children roles if they are not revoked for it with the REVOKED property:

e DOC ST OBJ_ID (FK) —a subtype of the documents, the access to which is given by the role;

e ROLE_ID (FK) —alink to the role;

e OPERATIONS — a bit mask, containing the list of operations, which can be performed on the subtype
documents, the access to which is given by the role.

Permissions to launch of handlers

EEH Table HANDLER _PERMISSIONS keeps the list of handlers available for the roles:

e HANDLER_OBJ_ID (FK) —a handler, which launch is permitted by the role;

e ROLE ID (FK)—alink to the role;

e REVOKED —revocation of access to the handler for the role. It is used for revocation of access derived
by the parent role from the child.

EEH For convenience of work, the content of table HANDLER PERMISSIONS is replicated automatically
into the table HANDLER PERMISSIONS_EXT, where a list of all available handlers specified explicitly is
kept for each role, taking into account that the parent role has access permissions of the children roles if
they are not revoked for it with the REVOKED property:

e HANDLER OBJ_ID (FK) —a handler, which launch is permitted by the role;

e ROLE_ID (FK) —alink to the role.

Other permissions

EEE Table ROLE_MODULES keeps the list of modules of client applications available for the roles:

e ROLE ID (FK)—alink to the role;

e MODULE_0OBJ_ID (FK) —module of the client application which start is allowed by the role;

REVOKED — revocation of access to the module of client application for the role. It is used for
revocation of access derived by the parent role from the child.

EEH Table PRINTERS_PERMISSIONS keeps the list of handlers available for printers:

ROLE ID (FK) —a link to the role;

DICT _OBJ_ID (FK) —a printer, access to which is allowed by the role;

REVOKED — revocation of access to the handler for printer. It is used for revocation of access derived
by the parent role from the child.

© 2018 Ultimate 319

ULTRAATE

Developer SOLIn

Permissions check

All permissions except for those formulated by the developer, are checked at the database level. The
developer's permissions can be checked also at the level of a client or application server.

After user authorization at the point of session initiation, the entire set of its permissions is saved in the
database context. It can be checked using PACK_AUTH pack.

Modules of client applications

Descriptions of client applications and their modules are kept in the kernel scheme in the following
tables:

e CLIENT APPS —client applications;

e CLIENT_MODULES —modules of applications;

o CLIENT APP_MODULES —relations of modules and client applications;
o CLIENT_ASSEMBLIES —assemblies of the modules.

Data model looks like as follows:

/CLIENT_APPS
VCLIENT_ASSEMBLIES 7D] VCLIENT_APP_MODULES
[' D W NAME | ID]
DESCRIPTION
FILE_NAME APP_OBJ_ID (FK)
FILE_DATA MODULE_OBJ_ID (FK)
FILE_SIZE

/CLIENT_MODULES

FILE_HASH

MODULE_OBJ_ID (FK) 71D -
NAME
DESCRIPTION
IS_COMMON

EEH Table CLIENT _APPS keeps the list of client applications. For example, an application can be available
for desktop PC, application for touch-screen PC or for mobile device:

o NAME —application name;

e DESCRIPTION —application description.

EEH Table CLIENT _MODULES keeps the list of client application modules:

e NAME —module name;

e DESCRIPTION —module description;

e |S_ COMMON —flag, indicating the need to give the rights for access to the module. If it is established
in true value , the user should not have special rights to start the module.

EEH Table CLIENT _APP_MODULES keeps the relations of modules and client applications. Several
modules can correspond to each client application in the same manner as several applications can
correspond to each module:

e APP_OBJ_ID (FK) —a module linked to the client application;

e MODULE OBJ_ID (FK)—an application, which the module is linked to.

EH In terms of implementation, each module represents one and more libraries. A combination of these
libraries is called module assembly and is described in the table CLIENT_ASSEMBLIES:

FILE NAME —library file name, which is included into the assembly;

FILE_DATA —library file;

FILE _SIZE —size of the library file in bytes;

FILE HASH —file hash;

MODULE_OBJ_ID (FK) —a module, which the library is linked to.

© 2018 Ultimate 320

ULTRAATE

Developer SOLIn

Localization of exceptions

The mechanism for localization of exception implements dispatching reasonable warnings and error
messages to the system user in their language.

EEH The data model is represented with the table EXCEPTION_TRANSLATIONS, which keeps the list of
localized values of exceptions:

DESCRIPTION —localization description;

TYPE PATTERN —exception type;

MESSAGE_PATTERN —exception text;

USE _REGEXP — a flag indicating the use of regular expressions (detailed description of regular
expressions can be found on MSDN website =+ eng/rus) in the fields TYPE_PATTERN and
MESSAGE_PATTERN;

TEXT — localized text for exceptions of corresponding type (TYPE_PATTERN) and text
(MESSAGE_PATTERN);

LANG_ID (FK) —localization language;

SORT_INDEX — sort index of localizations. For two similar pairs of text-type localizations, localization
with large index value will be used.

|l| Let us consider functioning of the mechanism of exception localization by the example:

Error = B
P
@ Oracle error
Orade error
@ Copy Browse
& shut down Close
1
1
v

CradeException
LLTIMA.EMPLOYEE_FRCS_PK

In order to localize this exception, we add a record corresponding to its type (Exception) and
text (Message) into the table EXCEPTION_TRANSLATIONS:

DESCRIPTION ApplicationException | Constant is not found
TYPE_PATTERN System.ApplicationException
MESSAGE_PATTERN Constant is not found

USE_REGEXP 0

Constant is not found. Copy error text and send it to the developers
to dev@company.com
LANG_ID 1

TEXT

© 2018 Ultimate 321

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/ru-ru/library/ae5bf541.aspx

ULTRAATE

Developer SOLIn

SORT_INDEX 1 |

As aresult, the error message looks like as follows:

@ At least one FRC was selected twice or m...

At least one FRC was selected twice or more times at the Finance
bookmark. Check the list of FRC and remove duplicates.

B Copy Browse

If exception has enclosed exceptions, only the first one is localized:

Exception 1 Translated Exception 1
=- Exception 2 => @ Exception 2
=- Exception 3 B- Exception 3
If exception has non-serialized exception among enclosed ones, all exceptions is localized:
Exception 1 Translated Exception 1
=- Non Serializable Exception2 => &-Translated Non Serializable Exception 2
=- Exception 3 =- Translated Exception 3
Logging

Ultimate AEGIS® system provides the application developer with an option to store the changes made to
the tables of the subject scheme of the database. The change logs are kept in the kernel scheme because
one mechanism performs logging in both schemes of the database. The following tables are designed
for these purposes:

e LOG TABLES —logged tables;

e LOG _FIELDS —logged fields of the tables;

e LOG _CHANGES —information about changes made with the rows of logged tables;

e LOG_FIELDS_CHANGED —information about the changes made to the logged fields;

e STAT COMMAND_EVENTS —information about calls of the methods of handlers.

© 2018 Ultimate 322

ULTRAATE

Developer SOLIn

Data model looks like as follows:

LOG_CHANGES LOG_FIELDS_CHANGED STAT_COMMAND_EVENTS
71D 71D F1D
TYPE TYPE START DT
TIME TIME DURATION
LOG_ID CHANGE_ID (FK) HANDLER_OBJ_ID {FK)
—e TABLE_ID (FK) FIELD_ID (FK) - USER_ID (FK)
USER_ID (FK) NUMBER_VALUE SESSION_ID {FK)
SESSION_ID (FK) DATE_VALUE YOCUMENT ID {FK
CALL_ID VARCHAR2_VALUE)OC_SUBTYPE OBJ ID (FK)
CLOB_VALUE SERVER_CALL_ID
BLOB_VALUE
LOG_TABLES LOG_FIELDS
—(.- ID —{ ID ’—
OWNER NAME
NAME TABLE_ID (FK)
LOGGING LOGGING

EEH Table LOG _TABLES keeps the list of logged tables:

e OWNER — database scheme. It can be kernel scheme (kernel) or subject scheme (ultima). Only the
tables of the subject scheme are available to the application developer for logging, therefore value
ultima is automatically set to this property;

e NAME —a name of logged table;

¢ LOGGING - a flag indicating if the table is logged. The flag can be set to value false, if the table was
logged previously but this option was disabled for it afterwards.

' In case of enabling of the logging option for the table, additional ancillary box LOG ID is
= created automatically.

EEH Table LOG _FIELDS keeps the list of logged table fields. The logging mechanism allows storing all

changes not for all columns but only for selected ones:

o NAME —logged field name;

e TABLE ID (FK)—logged table, which the field corresponds to, filled in automatically;

e LOGGING - a flag indicating if the field is logged. The flag can be set to value false, if the field was
logged previously but this option was disabled for it afterwards.

EEH Table LOG_CHANGES keeps the information about the nature of changes, made to the row of logged

table, as well as by whom and when they were made (filled in automatically):

e TYPE—the type of change made to the table row, can have the following values:

= [—add arow;
= U —change arow;
= D—delete arow;

e TIME —time of the changes made to the table row;

e LOG _ID - 1D of changed row of logged table. It is assigned also to the changed table row itself in the
subject scheme of the database (for that purpose similar field LOG_ID was created in it). ID of changed
row is unique and, being assigned to it for the first time, does not change with subsequent changes
made to the content of its fields;

e TABLE ID (FK)—logged ID, which row the changes were made to;

e USER_ID (FK) —a user that made the changes;

e SESSION_ID (FK) —a session (client-server), during which the changes were made;

e CALL ID—1D of the call (method), which preserves constant value after login to the application server
and till logout.

© 2018 Ultimate 323

ULTRAATE

Developer SOLIn

EE Table LOG_FIELDS CHANGED keeps the changes made to the field of logged table (filled in
automatically):
e TYPE—type of logged data, defines in which field of the table LOG_FIELDS CHANGED , the changes will
be kept, being made to the content of logged fields of the table. It can have the following values:
= N corresponds to the field NUMBER_VALUE;
= D corresponds to the field DATE_VALUE;
= V corresponds to the field VARCHAR2 VALUE;
= Ccorresponds to the field CLOB_VALUE;
= Bcorresponds to the field BLOB_VALUE;
TIME —time of the changes made to the field of logged table;
CHANGE_ID (FK) — change made to the row of logged table;
FIELD_ID (FK) —logged field of the table, the changes were made to;
NUMBER _VALUE —-afield intended for storage of changes made to the content of numeric type logged
field (long, decimal or bool);
e DATE_VALUE-afield intended for storage of changes made to the content of logged field of the type
(date or DateTime);
e VARCHAR2 VALUE — a field intended for storage of changes made to the content of logged field of
string type (string, text and LargeText not longer than 4,000 characters);
e CLOB VALUE —a field intended for storage of changes made to the content of logged field of string
type (LargeText longer than 4,000 characters);
e BLOB_VALUE-afield intended for storage of changes made to the content of logged field of the type

byte[].

|l| Let us consider functioning of the logging mechanism by the example for the dictionary

"Contractors":
AGENTS
1D NAME EMAIL PHONE
1 Ken Kesey kenk@gmail.com 89262345124
2 John Steinbeck jhons@gmail.com 890318594536
3 Kurt Vonnegut kurtv@yahoo.com 89105238734
4 Harper Lee harperl@gmail.com 89015463738
5 Jerome Salinger jeromes@yahoo.com | 895269548736

© 2018 Ultimate 324

Developer

ULTRAATE

SOLID

If logging is enabled for its fields NAME, EMAIL and PHONE, in the kernel scheme in the tables
LOG_TABLES and LOG_FIELDS corresponding records will be added, and for the table AGENTS of
the subject scheme additional field LOG_ID will be created:

LOG_TABLES
ID OWNER NAME LOGGING
5 ultima AGENTS 1
LOG_FIELDS
ID NAME TABLE_ID LOGGING
17 NAME 1 1
18 EMAIL 1 1
19 PHONE 1 1
AGENTS
1D NAME EMAIL PHONE LOG_ID
1 Ken Kesey kenk@gmail.com 89262345124
2 John Steinbeck jhons@gmail.com 89031894536
3 Kurt Vonnegut kurtv@yahoo.com 89105238734
4 Harper Lee harperl@gmail.com 89015463738
5 Jerome Salinger jeromes@yahoo.com | 89269548736

Now in case of change of the contractor's phone number "Alla Leonidovna Amelina", the
following changes will be made in the table LOG_CHANGES and LOG_FIELDS _CHANGED of the
kernel scheme, as well as table AGENTS of the subject scheme of the database:

AGENTS
1D NAME EMAIL PHONE LOG_ID
1 Ken Kesey kenk@gmail.com 89262345124
2 John Steinbeck jhons@gmail.com 89031894536
3 Kurt Vonnegut kurtv@yahoo.com 89105238734
4 Harper Lee harperl@gmail.com 89031112233 | 142
5 Jerome Salinger jeromes@yahoo.com | 89269548736
LOG_CHANGES
ID TYPE TIME LOG_ID | TABLE_ID l?
245 |u 2011.11.10 15:20:34 142 5 ?2
LOG_FIELDS_CHANGED
1D TYPE TIME CHANGE_ID FIELD_ID NUMBER_VALUE I?
972 |n 2011.11.10 15:20:34 | 245 19 89031112233 2

EEH Table STAT COMMAND_EVENTS keeps information about the calls of handlers methods (filled in

automatically):

e START_DT- call start or end time. Each call store in table STAT_COMMAND_EVENTS in two lines: The
first line is the starting of call, the second - is the end. The rows can be differentiated by the values of
START DT and DURATION properties. It is the call start time for the first row START DT.DURATION
property has no such value. Itis the call end time for the second row START DT.DURATION property is
assigned with the value;

DURATION - call duration;
HANDLER_OBJ_ID (FK) —a handler, which methods were called;
USER_ID (FK) —a user, on which behalf the handler was called;

SESSION_ID (FK) —a session, during which a call was performed;

© 2018 Ultimate

325

ULTRAATE

Developer SOLIn

e SERVER _CALL_ID — D of the server call, which preserves constant value after login to the application
server and till logout.

Logging operation

Logging is realized by means of a package PACK_LOG, which includes two procedures:
e ENABLE LOGGING —includes logging for the specified table and its columns:
PROCEDURE ENABLE_LOGGING(
VTABLE VARCHAR2,
VCOLUMN_LIST VARCHAR2 := NULL,
VSCHEMA_NAME VARCHAR2 NULL);
= yTABLE —table name which has to be logged;
= yCOLUMN_LIST—-complete list of columns names, divided by commas, which have to be logged. If
NULL, then logging is enabled for all table columns except LOG_ID;
= ySCHEMA NAME — scheme name in which there is a specified table. If NULL, the scheme kernel
kernel of database will be used.
e DISABLE _LOGGING —switches off logging for the specified table and its columns:

PROCEDURE DISABLE_LOGGING(
VTABLE VARCHAR2,
VCOLUMN_LIST VARCHAR2 := NULL,
VSCHEMA_NAME VARCHAR2 NULL);
= yTABLE —table name which logging needs to be forbidden,;
= yCOLUMN_LIST — complete list of columns names, divided by commas, which have not to be
logged. If NULL, then logging is switched off for all table columns;
= ySCHEMA NAME — scheme name in which there is a specified table. If NULL, the scheme kernel
kernel of database will be used.
e GET_PAUSE_MODE - returns 1, if logging is suspended in the current session and 0, if logging is
enabled:

FUNCTION GET_PAUSE_MODE RETURN NUMBER;

e SET PAUSE MODE — pauses or resumes logging for the current session:
PROCEDURE SET_PAUSE_MODE (vPAUSE_MODE NUMBER);

= yPAUSE_MODE —if the parameteris equal to 1, logging will be suspended, if 0 — it will be renewed,;

' DDL operators can be carried out in the procedures ALTER TABLE table name ADD
m column_name, at the same time there is transaction COMMIT. To make a call of these
procedures in the main transaction (server calls) can be dangerous!

Itis also possible to operate logging by means of the manager IHistoryService (from namespace Ultima):
HistoryService.EnableLogging("kernel", "table name");

HistoryService.DisablelLogging("kernel", "another_table name", "columnl", "column2");

/* Hard optimization ! Danger ! */
using (HistoryService.PauselLogging())

CloneAllPrices();
}

© 2018 Ultimate 326

ULTRAATE

Developer SOLIn

Applications and modules
Client application architecture

[

| The client application is implemented in the form of a kernel and modules, which are loaded with
the kernel from the application server. The composition of loaded modules is determined by the user
role, under which the login to client application is carried out. The application server is implemented

similarly in the form of a kernel and set of modules.

Moreover, the number of client applications can be more than one, as distinguished from the
application server. In addition to client application for desktop PC, it can be for instance an application
for touch screen PC or an application for mobile device.

In case of client application, division into modules is stipulated with existence of highly tailored
functionality, which is not required for each user. For example, an ordinary user does not need a
functionality of cash module or administrator, which in turn does not need the developer's
functionality.

In turn, each module of the client application is a separate project, which includes a certain set of screen
forms and commands. In terms of implementation, each module represents one and more libraries.

The list of all modules and applications can be found in the corresponding Developer

dictionaries: By | = Languages
[Server modules —server modules; appsand || = MEroe ™0
[%5 Client app modules —modules of client applications; e | & mitter
[=h Client application —client applications. 1 B | Server modules
& Client app modules
[Client applications I}

Server modules

LCL) The list of all server modules kept by an application serverinto its folder at start ServerAssemblies,
it can be found in the dictionary “Server assembly":

[fim Server assembly = B
B F & a, o | i [T m 2 < Filters i@
Identity Server assembly file name

» 47688 {WebServices.dll

Server modules can be filtered according to the Module file name (Server assembly file name) and Tags
(Tag).

© 2018 Ultimate 327

ULTRAATE

Developer SOLIn

The server module edit form allows setting the following properties:

[fig Server assembly, 47588 = = =&

[Server assembly: 47688] nofiles - en [£ QK Save Cancel

Server assembly

Aszembly file name |WebServices.dl
Assembly file 110.5kB a

MD5-hash of the file |7956561556a3e15df0560cechaB2524b

Tags

The following options are available to each attachment:

e Assembly file name —module file name, is put down automatically when selecting a file;

e Assembly file — module file name. Loading of dIl and pdb-files is available (in order to line numbers
were contained in exceptions of Stack trace). The size of the chosen file is displayed in the field:

= button " opens the dialogue of loading of the module file;

= button allows saving the copy of the file to the local disc of the computer or another available
storage;

= button 2| opens the file. To open the program is used, associated with this file type in the
operating system;
e MD5-hash of the file — MD5-hash of the module file;
e Tags — tags used for description of the module functionality. It is used to search the objects, realized
under the certain functionality, associated with this tag.
Addition of a tag is carried out by keys |Space or [Enter . Removal —button % after the tag. As the space
is used for input of the tag, it is possible to replace it with symbols " _" or "-" in tags with the name

from several words.

In scripts it is possible to add references to assemblies of server modules.

Modules of client applications

l':(h_) The list of all modules of client applications can be found in the dictionary "Client module":

'%Clientmodule = B 2
er s Q -laj- o e Q| &

Madule name Module description Common madule Assembly file name Asszembly file size
] Mew test module b | TestClientModule. dil 110080

Dase module o TestClientModule.pdb 130580
Developer module ru\TestClientModule.resources.dll 7168
Test Test module

The dictionary window is divided into two parts: the modules of client applications are displayed on the
left, the list of libraries (assemblies) of the module selected on the left is displayed on the right. The
modules of client applications can be filtered by the Module name (Name) and Tags (Tag), their
assemblies — by the Name of the assembly file (Assembly file name).

© 2018 Ultimate 328

Developer

database:

ULTRAATE

SOLID

The assemblies for selected client module can be added &} or removed & with corresponding buttons
in the toolbar of assemblies. Addition is carried out by selection of the folder containing the assemblies.
Moreover, all content of the folder (all files) will be added to selected module and loaded into the

'-% Client maduls

Module name

Module description

ew test module

O & f # |Modulename Q.| |Tag

~ Q| |~ | & & |Assembly file name Q

hemhly file name

Common module

Azsembly file size

b | TestClientModule. dll 110080
Base Dase module v .| |TestClientModule.pdb 130560
Devel Developer module : rufiTestClientModule. resources. dil 7168
Test Test module
1
v

p
Browse For Folder

p
Browse For Folder

Select dient module folder:

Select dient module folder:

Bl Desktop 4 | Client -
» | Libraries 4 . ClientModules
> A Ultima » | Base
> 1M Computer » | BaseTradeClientModule 3
>¢§ Metwork --r > L Devel
>[5 Control Panel | en
& Recycle Bin Ty
. CSharplntellisense
PManCarhe i
[oK J [Cancel [oK {g [Cancel
L. A A oy
1
v
’:é Client module = B 2
O & f # |Modulename Q| [Tag ~(Q||~| & & |Assembly file name Ql &
Module name Module description Commaon module Azzembly file name Azsembly file size
b ew test module » | UltimaLib. resources.dll 5120
Base Dase module | Zyan.Communication.resources. dil 13324
Devel Developer module Taetliantodule.dll 110080
Test Test module = lodule.pdb 130560
Il)| Uploading and checking files
_ ntModule. resources.dll 23672
Baselentibrary.resources. dl 131584
ClientImplementation.resources.dll 35328
UltimaInterfaces.resources.dll 31744
ruTestClientModule. resources.dll 7168

© 2018 Ultimate

329

ULTRAATE

Developer

The edit form of the module allows setting the following properties:

SOLID

O Client module, 1436 = B =2
+ Client module: 1436 1] nofiles - en 0K Save Cancel
Client module Application
Name Test [- -

Description Application

¥ | UltmaClient

common module kernel module

T
ags test

Dev. comments

Name —module name. The name must coincide with the module folder name in the client application

Client\ClientModules\folder name\;

Description — module description;

common module — a flag indicating that the module is common. For loading of common module, the

user must not have any permissions. That is, while making the module common, we allow its loading

by any user launching its application;

kernel module — a flag indicating that the module is kernel. For loading of kernel module, the user

must have corresponding permissions;

Tags —tags used for description of the module functionality.

Dev. comments —comments of application developer;

comments —comments to the module. The comments are entered for each of system languages in the

form opened by clicking the link;

o Application —a list of client applications, which the module is a part of. The applications can be added
or removed & with corresponding buttons in the toolbar. In case of adding, a list form will open

for the client applications, where you can choose existing applications or create new ones. In case of

removal, the application will be removed from the list of applications, which the module is a part of,

but not from the dictionary of client applications.

Client applications

The list of all client applications can be found in the dictionary "Client application":

R Client application o =
o F # Q, &= < Filters g
Application ID Application name Application description Dev. comments

1 UltimaClient

Ultima BusinessWare Client

The client applications can be filtered by Name of the application (Application name) and Tags (Tag).

© 2018 Ultimate

330

ULTRAATE

Developer SOLIn

The edit form of the client application allows setting the following properties:

% Client application, 1 = EBEOE
+[Client application: 1] nofiles - en QK Save Cancel
Client application Modules
Name UltimaClient —

Description Litima BusinessWare Client Madule

b | TradeTestSolution
Tags
BaseTradeClientModule

Dev. comments

Metadata binaries

Aszemblies Metadata,dll

Resource files | ru\Metadata.resources.dl
ruMetadata. resources. pdb

e Group of propertiesClient application describes the client application:
= Name —application name;
= Description —application description;
= Tags —tags used for description of the application functionality;
= Dev. comments —comments of application developer;

e Metadata Binaries group of properties describes the metadata files, which the client application must
load. In addition to the names of files, a path should be indicated to them in relation to the client
application:
= Assemblies —files of assemblies (libraries);
= Resource files —files of resources;

There are the following files of metadata assemblies:
= metadata.dll— metadata;
= webservices.dll—description of DTO for web services;

e Modules — a list of modules, which the client application includes. The modules can be added or
removed & using corresponding buttons in the toolbar. In case of adding, a list form will open for the
modaules of client applications, where you can choose existing modules or create new ones. In case of
removal, the module will be removed from the list of modules, which comprise a part of client
application, but not from the dictionary of client applications modules.

How to create modules and screen forms of main application_2

Each module of main client application is a separate project, which includes a certain set of screen forms,
commands and control elements. The module must have at least one implementation of the class,
derived from BaseModule class, if the commands of this module are assumed to be added to the
interface (main menu).

DevExpress component library is used to create the screen forms. Every application developer must have
a separate license for the set of components for WinForms. Other libraries are supplied as part of
application and do not require additional licensing.

The platform of client application allows the application developer to create or override:
e modules of client application;

list forms of dictionaries;

edit forms of dictionary records;

list forms of the documents (logs of the documents);

© 2018 Ultimate 331

ULTRAATE

Developer SOLIn

e edit forms of the documents;

e type of control elements of table parts;

e query forms for the parameters of interactive commands;

user interface commands — these objects can be added to user interface menu and random logic can
be implemented in them;

e random screen forms opened from the user interface commands;

¢ redefine the interface or replace the main form of the application in full.

For each of the tasks, the application developer can use a set of classes, utilities and control elements
provided by the application kernel.

Let us consider in due course which tools are available for solving each of the above tasks.

Modules

Let us consider how to create a new module stage by stage by the example.

Create a new project-library Class Library and set its properties:

TradeTestSelution + X
Application
o o

Build
Build Events Assembly name: Default namespace:
Debug TradeTestSelution Ultirna. TradeTest
Resources Target framework: Output type:
Services ’.NI:—I' Framework 4.5 V] [Class Library V]
Edit the file Assemblyinfo.cs, while changing corresponding existing
values for those given below: o -ongE o .p
AssemblyCompany(UltimaConstants.CompanyName) Search Solution Explorer (Ctrl+:) p-
AssemblyCopyright(UltimaConstants.Copyright) [Solution TradeTestSolution’ (1 project)
AssemblyTrademark(UltimaConstants.Trademark) P TradeTestSolution
AssemblyVersion(UltimaConstants.FullVersionString) 4] Properties
AssemblyFileVersion(UltimaConstants.FullVersionString) P @ Assemblylnfo.cs k
4 | References
Additionally connect the libraries:
e from the section Assemblies -> Framework: ® o--udnd R
= System.ComponentModel.Composition; Search Solution Explorer (Ctrl+) p-~
- SyStem. Drawi ng,] Solution 'TradeTestSolution' (1 project)
H . 4 TradeTestSolution
= System.WindowsForms; b & Properties
e from the section Assemblies -> Extensions:
= DevExpress.XtraGrid; Add Reference.. %
Add Service Reference...

= DevExpress.XtrakEditors;

= DevExpress.Data;

= DevExpress.Utils;

e and additionally (by button Browse), indicating the files of the

libraries from Ultimate AEGIS® distribution package:

= BaseClientLibrary.dll — the library contains basic list forms and edit forms of the dictionaries and
documents, basic form of the report, basic form of the query for parameters of interactive
commands and control elements used in these forms;

= Clientimplementation.dll — the library contains a class of basic module, used to produce a list of
commands;

= Metadata.dll —the library contains all classes of metadata;

B Manage NuGet Packages...

Scope to This
New Selution Explorer View

© 2018 Ultimate 332

ULTRAATE

Developer SOLIn

= Clientinterfaces.dll — the library contains interfaces necessary also to create the commands and
implementation of the list forms and edit forms;

= Ultimalib.dll — the library contains system constants and descriptor of the classes of metadata
objects;

= Ultimalnterfaces.dll —the library contains interfaces of special managers.

Create a folder ThirdParty in the project and add there a library from Ultimate AEGIS® distribution
package with similar name;

Connect StyleCop, intended for code analysis for compliance with the style:
e copy the file Settings.StyleCop from Ultimate AEGIS® distribution package into the project folder;
e edit the project file *.csproj, by adding a string:

<Import Project="..\..\ThirdParty\StyleCop\StyleCop.targets" />

Creation of the module can be considered completed at this stage. Compile it and copy created libraries

into the client application folder (it is the main client application of Ultimate AEGIS® in this example)

Client:

e TradeTestSolution.dll and TradeTestSolution.pdb into the folder
Client\ClientModules\TradeTestSolution\;

e TradeTestSolution.resources.dllinto the folder \Distrib\Client\ClientModules\TradeTestSolution\ru\.

The only remaining thing is to create corresponding module in the dictionary Client Module:

(3 client module, 1436 = B =
+ Client module: 1436 1] nofiles - en 0K Save Cancel
Client module Application
Mame TradeTestSolution e
Description Test module Application
b | UltimaClient
| commeon module kernel module

.
== test

Dev. comments

Module Name must coincide with the name of its folder in the client application
Client\ClientModules\TradeTestSolution)\.

Also add the created module into corresponding client application (UltimaClient), make it accessible
(common module) and add the module libraries copied into the client application folder to it:

[y Client module [T 1 B4
e s Q -[a] # e Q| 2
Module name Module description Agzembly file name Aszembly file size
» ETradeTestSqut’on ETest module ¥ | TradeTestSolution. dil 13312
BaseTradeClientModule Base trade module TradeTestSolution. pdb 17920

List forms of dictionaries

If the required level of the setting for interface of the list form of documents exceeds the possibilities
offered by Ultimate AEGIS® system (see section System tools for setting of the interface of screen
forms), own edit form can be created for any document.

© 2018 Ultimate 333

ULTRAATE

Developer SOLIn

The following hierarchy of classes is implemented in the system to facilitate the work:
ZF BaselListForm
=- F BaseDictionaryListForm

=- EF BaseFlatDictionaryListForm

=- EF BaseTreeDictionaryListForm

BaseFlatDictionarylListForm is intended for implementation of the list forms of flat dictionaries,
BaseTreeDictionarylListForm —tree-like ones.

To implement the dictionary list form, it should be derived from suitable form (flat or tree-like) and
IRecordBrowser<T> and [RecordSelector<T> interfaces should be implemented, where T is type of
dictionary.

The system will search for the form implementing /RecordBrowser<T> interface to display the list of
records, and for selection of records (e.g. when clicked on **| in the control elements
DictionarylLookupEdit) it will search for the form implementing /IRecordSelector<T> interface. If no such
form appears to be in the system, the basic dictionary list form will open. If more than one of such form
appears to be in the system, the system throws an error. It allows avoiding unobvious behaviour of the
system in case of error in the system setting by the administrator.

The application developer may request opening of the list form through 5 DictionaryHelper using
SelectRecord<T>, SelectRecords<T> or BrowseRecords<T>methods, where Tis a type of dictionary, which
formis required for opening. The first two methods describe the list form for selection of one or several
records, the third method is used to view the list of records.

The most frequent reason to create own list form is implementation of the master-detail interface,
which is also called a filter. Therefore, BaseFlatDictionaryListForm form hosts already SplitContainer
control element, on which right panel a component is located for viewing of the dictionary records with
all standard tools — selection of columns, filters, etc. The left panel is reserved for placement of the
filter (table or tree), if this areais left empty —it will be hidden in the final form.

The application developer can also use the following control elements for creation of the list forms of
dictionaries, e.g. forimplementation of the filter:

e DictionaryGridViewPanel—to display the table with the toolbar;

e DictionaryTreeViewPanel —to display tree dictionaries with the toolbar.

BaseTreeDictionaryListForm form is implemented in the same manner.

A full list of classes, forms and control elements can be viewed in the following section Ultima control
elements.

Let us consider creation of the list form by the example of the dictionary of vehicles Vehicle:

[=] vehides = = R

— T Q| &~ 8 5 Max. rows: | 10000 S | 5 2 Filters

Identity Mame
1 Scania MOS1
3 Scania MOS52

4 Scania MSK1
5 MAM MSK1
G MAM MSK2Z
7 MAM MOS

© 2018 Ultimate 334

ULTRAATE

Developer SOLIn

E.g. we will make so that the vehicles could be filtered by the selected model of the vehicle (records of
the dictionary Vehicle model):

[vehides, 1 o =2 R
+«E Vehicles: 1 nofiles » en & - oK Save Cancel
MName Scania MO51

License plate number |EF7AXT7

Model identity 1 ¥ |-+ ||1, Scania R730 £

In the module project we create a new object Windows Form, derive

it from BaseFlatDictionaryListForm class and implement &l - 0B p

IRecordBrowser<T>and IRecordSelector<T> interfaces. Search Solution Explorer (Ctrl+;) p-
&a] Solution ‘TradeTestSolution' (1 project)
Pl TradeTestSolution
b S Properties
P =B References

P Runtests
% Code Cleanup
‘O Mewltem... Ctrl+Shift+A Add >
‘o Existing Item... Shift+Alt+A Scope to This
‘W Mew Folder Mew Solution Explorer View
8 Windows Form... Exclude From Project
T1 User Control... % ¥ cut Ctrl+ X

public partial class VehiclelListForm : BaseFlatDictionarylListForm,
IRecordBrowser<Vehicle>, IRecordSelector<Vehicle>

{
public VehiclelListForm()
{
InitializeComponent();
}
}

VehicleListForm.cs [Design] & X VehicleListForm.cs [Design] # X

ol VehicleListForm o= = || VehicleListForm =R =

Drop a tree control here.

-=p Note: if this panel is empty,
2 it won't be displayed at runtime.

Select

© 2018 Ultimate 335

ULTRAATE

Developer SOLIn

In order to get access to Ultima control elements, we have to create a [Fram™ ———
folder (e.g. Ultima) in the Toolbox and add the control elements into it Sesrch Teolbex P~
from the library BaseClientLibrary.dll (Choose Items -> Browse ->
BaseClientLibrary.dll).

Pointer
AttachmentltemEditControl
AttachmentsListControl
CommandControl
CommandListControl
CommoenCentrol
CustomLaycutCentrol
DateRangeFilterControl
DictionaryCheckList

O0ee0oods-

Use DictionaryGridViewPanel control elements to display the records of dictionary Vehicle model. Drag it
onto the form and (in the properties) rename it for convenience into VehicleModelGridViewPanel.
Choose the fill method Dock = Fill, in order to fill in the entire area of SplitContainer element.

Set the value DictionaryType = Ultima.Metadata.VehicleModel in the parameters to display a dictionary
record in the control element. For its table (control element GridControl of the library DevExpress) and
add similar data source:

VehicleListForm.cs [Design]* + X

i

[E VehicleListForm = = =
Q@ Q@ F & |identit Q 5 :b @ F & D ame Q| | Execute commands..~ ¥ | & - -
3 @E‘ GridControl Tasks -
Choose Data Source Iz‘

Ry @ None @

fainView) (Click here to change view)

Ag R
ick here to create a new level) *@ Add Project Data Source..

Click the 'Add Plagect Data So@.' link to
connect te data,

=
m

trieve Details Run Designer

ommand controls will be here,

B select

-

~
Data Source Configuration Wizard @Iﬂ—hj

i_—.I) Choose a Data Source Type

Where will the application get data from?

E e w8 93

Database Service Object { SharePaint

Lets you choose objects that can later be used to generate data-bound controls,

© 2018 Ultimate 336

Developer SOLIn

Data Source Configuration Wizard @Iéj

i:—.l) Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the ohject.

What objects do you want to bind to?
. [C] a0 DevExpress.XtraGrida12.2
a [a0 Metadata
a4 [1{} UltimaMetadata

[#2 Adresses
[7]#2 Agent

»

Add Reference...

|| *2 Vehicle

[Tz VehicleMake i
#3 VehicleModel |
[[]*2 VirtualStockReserve

1

Hide systemn assemblies

gy [o

b -

Implement necessary methods (which are described in the code):

public partial class VehiclelListForm : BaseFlatDictionarylListForm,
IRecordBrowser<Vehicle>, IRecordSelector<Vehicle>

{
public VehiclelListForm()

{

InitializeComponent();

// In order the choice of the record of VehicleModel dictionary in

// VehicleModelGridViewPanel element could influence on the content of
GridPanel, displaying

// the records of the dictionary Vehicle, a filter should be added. We bind

// the handler to the event ApplyCustomFilter of GridPanel control element.

GridPanel.ApplyCustomFilter += GridPanel ApplyCustomFilter;

// In order in the created record of the dictionary Vehicle the model of the
vehicle

// could be inserted automatically in accordance with the record of the
dictionary Vehicle model chosen

// in VehicleModelGridViewPanel element,

// a filter should be added. We bind the handler to the event

// InsertRecord of GridPanel control element.

GridPanel.InsertRecord += GridPanel_InsertRecord;

// Remove odd tools from GridPanel.
GridPanel.Properties.LimitCounterVisible = false;
GridPanel.Properties.GroupButtonVisible = false;
GridPanel.Properties.PrintButtonVisible = false;
GridPanel.Properties.IDEditVisible = false;
GridPanel.Properties.CommandsMenuVisible = false;

}

// Load the records into VehicleModelGridViewPanel control element.
protected override async Task LoadRecords()
{

await VehicleModelGridViewPanel.LoadRecords();

await base.LoadRecords();await base.LoadRecords();

© 2018 Ultimate 337

ULTRAATE

Developer SOLIn

// In case of change of model choice in \VehicleModelGridViewPanel element,

// every time the list of records of GridPanel should be updated. For that purpose,
we will respond

// to the event SelectionChanged of VehicleModelGridViewPanel element.

private async void VehicleModelGridViewPanel SelectionChanged(object sender,private
async void VehicleModelGridViewPanel SelectionChanged(object sender,

EventArgs e)
{

}

await GridPanel.LoadRecords();

// The handler of ApplyCustomFilter event of GridPanel element.
private void GridPanel_ ApplyCustomFilter(object sender,
Client.Controls.CustomFilterEventArgs e)

{
var selectedModels = VehicleModelGridViewPanel.SelectedRecordList;
var customFilter =
DictionaryFilterHelper.GetContainsFilterExpression("ModelID",
selectedModels, e.ParameterExpression);
e.FilterExpressions.Add(customFilter);
}

// The handler of ApplyCustomFilter event of GridPanel element.
private void GridPanel InsertRecord(object sender, InsertRecordEventArgs e)

{
var selected = VehicleModelGridViewPanel.SelectedRecordList;
if (!selected.IsEmpty)
{
e.Parameters["ModelID"] = selected.First();
}
}

}

Compile a project, copy the created libraries into the module folder in the
client application Client/ClientModules/TradeTestSolution, reload metadata
and open the created list form of the dictionary using the same command,
which was used for previous one:

B, i
a £2. Compile
— —
=l T} Reload ~
Tools
- % Reload metadata

Bra @ Reload web ser\rib ‘

[E vehides = = o=
o Q| (k| £ o F & Q fel| & <« Filters @
Identity |Mame Identity License plate number
2 MAN TGM b 5 ABS3CC50
1 Scania R730 & P462TM150
7 ¥T&SHE197

© 2018 Ultimate 338

ULTRAATE

Developer SOLIn

How to create expression-subrequests in filters

LINQ expressions are used on the client for list and tree filtering. Simple predicates including constants
or value lists are enough for filtering in most situations. For example, to display items out of the
specified category list, that's enough to use this filter:

private void GridPanel_ ApplyCustomFilter(object sender, CustomFilterEventArgs args)

{
// filter by article groups not including subfolders

var groups = ArticleGroupsTreePanel.SelectedRoots;
args.AddFilter<Article>(ar => groups.Contains(ar.GroupID));

}

The problem appears when filter expression needs access to another table. Attempt to use
DataContext.GetTable() doesn’t lead to the expected results as LINQ-expressions on the client have
restrictions connected to serialization and their transfer to the server. For example, this request will
lead to a serialization error:

private void GridPanel ApplyCustomFilter(object sender, CustomFilterEventArgs args)

{

var groups = ArticleGroupsTreePanel.SelectedRoots;

// filter by article groups including subfolders
args.AddFilter<Article>(ar => groups.Contains(ar.GroupID) ||
DataContext.GetTable<ArticleGroupTreeLink>()
.Where(t => groups.Contains(t.AncestorID))
.Select(t => t.DescendantID)
.Contains(ar.GrouplID));

}

It occurs because DataContext is form property in the expression. Actually it is this.DataContext, where
this is a form which has a control element with a filter. Expression captures the link this as
Expression.Constant(typeof(FormType), this), and attempt of this expression transfer to the server fails
as FormType is unavailable on the server.

To include the table reference in the filter, it is enough to replace DataContext.GetTable with the static
QueryExtensions.GetTable method (it is necessary to connect using Ultima.Data). It is possible to use this
method both in filters and in normal LINQ-requests, except for the very first table in the request. The
filter shown in the previous example will take a form:

private void GridPanel_ ApplyCustomFilter(object sender, CustomFilterEventArgs args)

{

var groups = ArticleGroupsTreePanel.SelectedRoots;

// filter by article groups including subfolders
args.AddFilter<Article>(ar => groups.Contains(ar.GroupID) ||
QueryExtensions.GetTable<ArticleGroupTreelLink>()
.Where(t => groups.Contains(t.AncestorID))
.Select(t => t.DescendantID)
.Contains(ar.GroupID));

© 2018 Ultimate 339

ULTRAATE

Developer SOLIn

Such filters can be used not only for hierarchical tables. It is possible to filter, for example, the item list
according to the list of online-categories. Online categories are connected to normal categories through
the table ArticleGroupsToOnline:

private void GridPanel_ ApplyCustomFilter(object sender, CustomFilterEventArgs args)
{

// filter by online groups

var onlineGroups = OnlineGroupsTreePanel.SelectedList;

args.AddFilter<Article>(ar =>
QueryExtensions.GetTable<ArticleGroupsToOnline>()
.Where(link => onlineGroups.Contains(link.0OnlineGroupID))
.Select(link => link.ArticleGroupID)
.Contains(ar.GroupID));

' This method works only in the LINQ-requests executed on the client. In scripts it is still
= necessary to use DataContext.GetTable().

Interceptor of the LINQ-requests executed from the client is added on the server. The
interceptor processes LINQ-expressions, replacing one subtrees with others. In this case,
having met QueryExtensions.GetTable() method call, the interceptor replaces it with
DataContext.GetTable() extension-method call. As the interceptor processes only client
requests, on the server QueryExtensions.GetTable method will lead to a broadcasting error in
sQL.

How to create list form filters

If necessary, one can append additional properties and/or logic in addition to the standard ones, which
can be selected via the columns selection form; the form is called by clicking the button |Fz/).

However, this can be done only for the customized list forms, not for forms generated by the system by
default. This restriction can be evaded once you create a custom copy of the list form in a few easy
steps. E. g., for a flat dictionary, it is sufficient to create a new Windows Form object, inherit it from
BaseFlatDictionarylListForm and implement IRecordBrowser<T>and IRecordSelector<T> interfaces, where
Tis a dictionary type (detailed information on the process provided on the initial stage of creation of
Dictionary list form):

public partial class ArticlelListForm : BaseFlatDictionaryListForm,
IRecordBrowser<Article>, IRecordSelector<Article>

{
public ArticleListForm()
{
InitializeComponent();
}
}

There are two methods to add a property to the list form filter:

1. append one or several additional properties to the User filter. The properties appended this way will
be originally available to all users. When configuring the User filter via the columns selection form
called by clicking the button |F2/, the properties cannot be deleted;

2. configure a Default filter from the scratch by adding the desired properties into it and, if necessary,
the standard ones (all of them or selectively).

Consider both methods using the example of the list form of the Articles dictionary. To put it simply,
instead of a complicated logic, we will add to the filter the properties of the dictionary.

© 2018 Ultimate 340

ULTRAATE

Developer SOLIn

For the first example, let's add the property Name to the User filter. To do this, it is sufficient to
implement in the list form class the following logic:

public ArticleListForm()
{

InitializeComponent();

AddAdditionalFilterControls();
}

// Controls for entering filter text
private TextEdit ArticleNameFilterEdit { get; set; }

private void AddAdditionalFilterControls()
{
// Filter entry field caption
var ArticleNameFilterlLable = new LabelControl
{
Text
Dock

"Name"
DockStyle.Top

}s

// Control: filter entry field
ArticleNameFilterEdit = new TextEdit
{

"ArticleNameFilterEdit",
DockStyle.Top

Name
Dock

}s

// Adding caption and filter entry field
GridPanel.FilterControl.AdditionalFilterControls.Add(ArticleNameFilterLable);
GridPanel.FilterControl.AdditionalFilterControls.Add(ArticleNameFilterEdit);
ArticleNameFilterEdit.BringToFront();
GridPanel.FilterControl.BestSizeAdditionalFilterControls();

}

// Applying filter
private void GridPanel ApplyCustomFilter(object sender, CustomFilterEventArgs args)

{
if (args.FilterActive && !string.IsNullOrWhiteSpace(ArticleNameFilterEdit.Text))

{

var name = ArticleNameFilterEdit.Text;

args.AddFilter<Article>(a => a.name.ToLower().Contains(name));

}

The second example implies the creation of a new control for the Default filter. Create a new element
"User control", inherit it from CommonControl (from Ultima.Client namespace) and implement
ICompositeFilterControl interface (from Ultima.Client.Controls.Filtering namespace):

public partial class MyFilterControl : CommonControl, ICompositeFilterControl

{
public MyFilterControl()

{
}

InitializeComponent();

© 2018 Ultimate 341

ULTRAATE

Developer SOLIn

Implement ICompositeFilterControl interfaces:

MyFilterControl.es & X

Ultima.Trade. Dictionaries. Articles.MyFilterControl
—lusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Lling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
18 |using Ultima.Client;
11 |using Ultima.Client.Controls.Filtering;

[V, I SO ETR R

Wl sl M

12

13 Hnamespace Ultima.Trade.Dictionaries.Articles

14 |{

152 public partial class MyFilterControl : CommonCentrol, ICompositeFilterControl

16 { B-

17 B public MyFilterControl()) o

18 I Implement interface 'lCompositeFilterControl' Ib
19 InitializeComponent(); Explicitly implement interface 'lCompositeFilterControl*
28 }

21 }

22 (3

23

public partial class MyFilterControl : CommonControl, ICompositeFilterControl

{
public MyFilterControl()

{
}

InitializeComponent();

public event EventHandler ApplyFilters;

public ClassDescriptors.IClassDescriptor ClassDescriptor

{
get

{

throw new NotImplementedException();

throw new NotImplementedException();

}

public event EventHandler FilterExpressionChanged;

public Task<System.Ling.Expressions.lLambdaExpression> GetFilterExpressionAsync()

{

throw new NotImplementedException();

}

public void ResetFilter()

{ throw new NotImplementedException();
}

public void ShowCustomizationForm()

¢ throw new NotImplementedException();
}

© 2018 Ultimate 342

ULTRAATE

Developer SOLIn

public bool SupportsCustomization

{
}

get { throw new NotImplementedException(); }

}

Provide the filter with the control elements for entering filter values: Name, State and Brand:

MyfFilterControl.cs [Design] + X MyfFilterControl.cs [Design]* + X

Mame

State identity

-] [- X
Brand identity

- o v X

Implement filter logic:
public partial class MyFilterControl : CommonControl, ICompositeFilterControl

{
public MyFilterControl()

{
}

InitializeComponent();

public event EventHandler ApplyFilters;

// ApplyFilters event stub
private void OnApplyFilters()

{
ApplyFilters.SafeInvoke(this, EventArgs.Empty);

public event EventHandler FilterExpressionChanged;

// ApplyFilters event stub
private void OnFilterExpressionChanged()

{
}

FilterExpressionChanged.SafeInvoke(this, EventArgs.Empty);

// Specify the dictionary in class descriptor
public ClassDescriptors.IClassDescriptor ClassDescriptor
{
get { return Article.StaticClassDescriptor; }
set { /* ignore */ }
}

// Applying filter
public async Task<System.Ling.Expressions.lLambdaExpression> GetFilterExpressionAsync()
{

// Filter object

var filter = PredicateBuilder.Get<Article>();

© 2018 Ultimate 343

ULTRAATE

Developer SOLIn

// Filter conditions
if (!string.IsNullOrWhiteSpace(NameEdit.Text))

{

var name = NameEdit.Text;

filter = filter.And(a => a.Name.ToLower().Contains(name.ToLower()));
}
if (StateEdit.SelectedList.Any())
{

var statelist = StateEdit.SelectedlList;

filter = filter.And(a => statelList.Contains(a.StatelID));
}
if (BrandEdit.SelectedList.Any())
{

var brandList = BrandEdit.SelectedlList;

filter = filter.And(a => brandList.Contains(a.BrandID));
}

return await Task.FromResult(filter);

}

// Reset filter values
public void ResetFilter()

{
NameEdit.ResetText();
StateEdit.ClearSelectedRecords();
BrandEdit.ClearSelectedRecords();
}
public void ShowCustomizationForm()
{
throw new NotImplementedException();
}

// Disable filter setup by customization standard means
public bool SupportsCustomization

{
}

get { return false; }

}

In conclusion, specify the need to use the newly-created filter in the dictionary list form class:

public BaseArticleListForm()
{

InitializeComponent();

GridPanel.DefaultFilterControl = new MyFilterControl();

© 2018 Ultimate

ULTRAATE

Developer SOLIn

Upon completion, compile the project, copy the created libraries o =
into the module folder in the client application
Client/ClientModules/TradeTestSolution, reload metadata and open #= Filters| @
the filter of the Articles dictionary list form: User filter
e Name field appended to the User filter by the first method is Add or remove fiters, .
displayed in the upper part of the filter Name
e the fields appended to the Default filter by the second method are
displayed in the filter's lower part. IR
Mame
State identity
- e
Brand identity
<] -
Reset filters Apply

Edit forms of dictionary records

If the required level of the setting for interface of the edit form of dictionary records exceeds the
possibilities offered by Ultimate AEGIS® system (see section System tools for setting of the interface of
screen forms), own edit form can be created for any dictionary.

The following hierarchy of classes is implemented in the system to facilitate the work:
L} BaseEditForm
=- & BaseDictionaryEditForm

To implement the edit form for dictionary records, it should be derived from BaseDictionaryEditForm
form, and IRecordEditor<T> interface should be implemented, where Tis a type of dictionary.

The system for editing of the dictionary record will search for the form implementing /RecordEditor<T>
interface. If no such form appears to be in the system, the basic dictionary record edit form will open. If
more than one of such form appears to be in the system, the system throws an error. It allows avoiding
unobvious behavior of the system in case of errorin the system setting by the administrator.

The application developer may request opening the dictionary record edit form through S5
DictionaryHelper class using EditRecord<T> and BeginEditRecord<T> methods, where T is a type of
dictionary, which record edit form should be opened. The methods open modal and modeless edit
forms correspondingly.

Let us consider creation the edit forms for dictionary records by the example of the same dictionary of
vehicles Vehicle:

[# vehides, 1 = B OER

| Vehicles: 1 (] nofiles » en & ~ #a oK Save Cancel

Mame Scania MOS51
License plate number E77AXT7

Model identity 1 * === |1, Scania R730 £

© 2018 Ultimate 345

Developer

ULTRAATE

SOLID

In the module project we create a new object Windows Form, derive it from BaseDictionaryEditForm
class (from space name Ultima.Client.Dictionaries) and implement IRecordEditor<T>interface:

public partial class VehicleEditForm :

{
public VehicleEditForm()

{
}

InitializeComponent();

VehicleEditForm.cs [Design] + X

VehicleEditForm.cs [Design] + X

BaseDictionaryEditForm, IRecordEditor<Vehicle>

=N EoR ==

a2 VehicleEditForm

BE

10: 123123)] =~ en

|# VehicleEditForm

& -

Execute commands...

Bammand controls will be here.

The data source should be connected to created form. For that purpose, add bindingSource control
elementto it and connect Ultima.Metadata.Vehicle metadata object to it:

VehicleEditForm.cs [Design]* & X

"

[VehicleEditForm
B

BE « [I:123123 (§ - en (& - | Execute commands..

B ommand controls will be here.

@ Mone

> @¥ Other Data Sources k-

5 +Q Add Project Data Scurce...
[l
Select a data so under 'Other Data

rces' to connect to data.

(Sou

Filter

Data Source Configuration Wizard

i:—.l) Choose a Data Source Type

Where will the application get data from?

E © 8 9

Database | SharePoint

Service

Lets you choose objects that can later be used to generate data-bound controls,

Cancel

© 2018 Ultimate

346

Developer

ULTRAATE

SOLID

Data Source Configuration Wizard

i:—.l) Select the Data Objects

assembly, cancel the wizard and rebuild the project that contains the ohject.
What objects do you want to bind to?

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced

- O a0 DevExpress.XtraGrid.vl2.2
a [a0 Metadata
a4 [1{} UltimaMetadata

[#2 Adresses
[7]#2 Agent

[]#2 UnitMeasurement
3 Vehicle

[] #2 VehicleMake
[[]*z VehicleModel

& Add Reference...

Hide systemn assemblies

< Previous

[Emsh%_][e

b

Assign the added bindingSource element in the form parameters as DataSourse:

VehiclekditForm Ultima.Client.Dictionaries.BaseDic -

=% (D]
TS bindingSource

Htmllmages (none)

EA

Now add the control elements to the form, which are intended to display the properties of dictionary
record. Connect each of them through DataBindings -> EditValue property to corresponding properties

of the dictionary in bindingSorce:

VehicleEditForm.cs [Design]* + X W
& Mone
[VehicleEditForm (o=@]=] 4 W bindingSource
| i)
BiE « | I:123123] - en & - | Execute commands.. oK v l Name
7 I Ib(en sePlateMumber
Vehicle name D lj B ModelD n
. B Model .

License plate number Model of the vehide

. @® Other Data Sources

*a Add Project Data Source..

B ommand controls will be here.

Selecting a Binding5ource property binds to
the corresponding property of the list that t.

Tag fnone)

For DictionaryLookupEdit control element, using which the vehicle model (ModellD) is displayed, we
choose additionally the type of dictionary in DictionaryType property, which records it displays —

Ultima.Metadata.VehicleModel.

Upon completion compile a project, copy the created libraries into the module folder in the client
application Client/ClientModules/TradeTestSolution, reload metadata and open the created dictionary

record edit form:

[Vehidles, 5 o B R
+[E Vehicles: 5] nofiles - en & -~ OK Save Cancel
Vehide name Scania MOS1
License plate number |Ib_ Model of the vehide |1, Scania R730 -

[the number format is "A123BC 45™ or "A123BC 458

© 2018 Ultimate

347

ULTRAATE

Developer SOLIn

List forms of documents

If the required level of the setting for interface of the edit form of documents exceeds the possibilities
offered by Ultimate AEGIS® system (see section System tools for setting of the interface of screen
forms), own edit form can be created for any document.

The following hierarchy of classes is implemented in the system to facilitate the work:
L} BaseEditForm
=- Ef BaseDocumentEditForm

To implement the edit form for a document, it should be derived from BaseDocumentEditForm form,
and /RecordEditor<T>interface should be implemented, where Tis a document type.

The system for editing of the document will search for the form implementing IRecordEditor<T>
interface. If no such form appears to be in the system, the basic document edit form opens. If more than
one of such form appears to be in the system, the system throws an error. It allows avoiding unobvious
behaviour of the system in case of error in the system setting by the administrator.

The application developer may request opening of the document edit form through & DocumentHelper
class using EditDocument<T> and BeginEditDocument<T>methods, where Tis a type of document, which
edit form should be opened. The first method opens the list form for selecting one document, the
second one is used to view the list of documents.

The most common reason to create your own list form - master-implementation of interface details.
Therefore, in the form BaseFlatDocumentListForm SplitContainer control is already posted , and on the
right panel of it a component for the submission of documents with all standard tools - selection of
columns, filters, etc. - is located. The left panel is reserved for the placement of a filter; if you leave this
field empty it will be hidden in the final form.

Let us consider creation of the edit form of documents by the example of Purchase type of documents:

Purchases = B
@ & |27.06-28.06, Ssubtypes | v | | Execute commands..~ ¥y | & v | i % Max. rows: | 10000 S| & < Filters &
Identity |Store.Mame Description Supplier.Mame Creation date Transaction date Document creator... |Deleted

m

Moscow Purchases (Put to stock) #53171, 27.06.2013 19:43:28 Benchmark Agent 2013.06.27 20:16:28 2013.06.27 20:15:28 xpoft
531?3" STORE #71 Purchases (Put to stock) #53173, 27.06.2013 19:49:31 Benchmark Agent 2013.06.27 20:22:31 2013.06.27 20:22:31 xpoft
53175 STORE #415 Purchases (Put to stodk) #53175, 27.06.2013 19:51:51 Benchmark Agent 2013.06.27 20:24:51 2013.06.27 20:24:51 mick
53178 STORE #307 Purchases (Put to stock) #53178, 27.06,2013 19:54:58 Benchmark Agent 2013.06,27 20:27:58 2013.06.27 20:27:58 mick
53180 STORE #33%9 Purchases (Put to stodk) #53180, 27.06.2013 19:56:44 Benchmark Agent 2013.06.27 20:29:44 2013.06.27 20:29:44 mick
53182 STORE #322 Purchases (Put to stodk) #53182, 27.06.2013 19:58:48 Benchmark Agent 2013.06.27 20:31:48 2013.06.27 20:31:48 mick

In the module project create a new object Windows Form, derive it from BaseDocumentEditForm (from
Ultima.Client.Documents namespace) and implement IRecordEditor<T> interface:

public partial class PurchaseEditForm : BaseDocumentEditForm,
TRecordEditor<PurchaseDocument>

{
public PurchaseEditForm()
{
InitializeComponent();
}
}

© 2018 Ultimate 348

Developer

PurchaselistForm.cs [Design] + X PurchaselistForm.cs [Design] + >

o) PurchaseListForm E=xEERE== PurchaseListForm

Drop a tree or a grid contral here.

- Note: if this panel is empty,
H it won't be displayed at runtime.

i

B celect

]

The data source should be connected to created form. For that purpose, add bindingSource control
element to it and connect Ultima.Metadata.PurchaseDocument metadata object to it:

PurchaselistForm.cs [Design]* & X

PurchaselistFarm EI@
. Q = I:b o + | | Execute commands... ~ =T

@ GridControl Tasks
Data Source Wizard

Choose Dats Source [T I=]

Ru @ Mone 2)

@ @ . ¥ Other Data Sources
B
FinView) (Click here to change view)
ik here to create a new level) A
q
Vi
ieve Details Run Designer Ap
[

"'E Add Project Data Source...
AE | P
Select a data soLﬁe under 'Ot@)ata

Le| Sources' to connect to data.

Unaoce T Farent conanTer

' ™
Data Source Configuration Wizard @Iﬂ

i;) Choose a Data Source Type

Where will the application get data from?

S o § 3

[iatabase Service Object i SharePoint

Lets you choose objects that can later be used to generate data-bound controls,

S

© 2018 Ultimate 349

Developer

ULTRAATE

SOLID

Data Source Configuration Wizard

i:—.p Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects, If an object is missing frem a referenced
assembly, cancel the wizard and rebuild the project that contains the ohject.

What objects do you want to bind to?

a [Metadata
4 [1{} Ultima.Metadata

[#3 Adresses

1%z Agent

[71# AgentAdress

|| ¥ PrivatePersonAttribute
[]#3 PurchaseArticleTablePartRow

5 [¥]*2 PurchaseDocument

[[]#*= RawArticleTablePartRow

Add Reference...

Hide system assemblies

< Previous

[Finish!}J I Cancel

"

The control UltimaTextEdit is used to display the sub-type of the selected document.

PurchaseListFarm.cs [Design] +# >

PurchaselistFerm E@
Q| & H & - | Execute commands..~ ¥ | & -~ B E @ -
Iden... Mame Offic... Office
123 string 123
123 string 123

idView 1| (Click here to change view)

reate a new level)

3 Run Designer

B select

We realize the necessary methods (described in the code):

public partial class PurchaselListForm : BaseFlatDocumentListForm,

{

IRecordBrowser<PurchaseDocument>, IRecordSelector<PurchaseDocument>

// We import the manager, required to obtain the document subtype.

[Import]

private IDictionaryManager DictionaryManager { get; set; }

public PurchaseListForm()

{

InitializeComponent();

© 2018 Ultimate

350

ULTRAATE

Developer SOLIn

// If you want selection of Store Dictionary record in

// StoreGridViewPanel element to influence GridPanel contents, showing
// the documents, you should add a filter. Bind the handler

// to ApplyCustomFilter event of GridPanel control.
GridPanel.ApplyCustomFilter += GridPanel_ApplyCustomFilter;

// If you want the store in the creating document

// to be placed automatically in accordance with the Dictionary record Store,
// selected in the element StoreGridVeiwPanel, you should add a filter.

// Bind the handler to InsertRecord event of GridPanel control.
GridPanel.InsertRecord += GridPanel_InsertRecord;

// For showing in the element UltimaTextEdit the subtype of document
// selected in element GridPanel, you should also add a filter.

// Bind the handler to SelectionChanged event of GridPanel control.
GridPanel.SelectionChanged += GridPanel_SelectionChanged;

}

// Load entries in controls GridPanel and StoreGridViewPanel.
protected async override Task LoadRecords()
{

await StoreGridViewPanel.LoadRecords();

await base.LoadRecords();

}

// If you change a store in StoreGridViewPanel you should every time

// upgrade the entries list in GridPanel. for this we will respond to

// SelectionChanged event of StoreGridViewPanel element.

private async void StoreGridViewPanel SelectionChanged(object sender, EventArgs e)

{
}

await GridPanel.LoadRecords();

// Handler ApplyCustomFilter of GridPanel element.
private void GridPanel_ ApplyCustomFilter(object sender,
Client.Controls.CustomFilterEventArgs e)

{
var selectedStores = StoreGridViewPanel.SelectedRecordList;
var customFilter =
DictionaryFilterHelper.GetContainsFilterExpression("StoreID",
selectedStores, e.ParameterExpression);
e.FilterExpressions.Add(customFilter);
}

// Handler InsertRecord of GridPanel element.
private void GridPanel InsertRecord(object sender, InsertRecordEventArgs e)

{
var selected = StoreGridViewPanel.SelectedRecordList;
if (!selected.IsEmpty)
{
e.Parameters["StoreID"] = selected.First();
}
}

// Handler SelectionChanged of GridPanel element.
private void GridPanel_SelectionChanged(object sender, EventArgs e)

{
}

UpdateSummary();

© 2018 Ultimate 351

ULTRAATE

Developer SOLIn

// Show subtype of document selected in GridPanel in the element UltimaTextEdit.
private void UpdateSummary()

{

var summaryText = string.Empty;

if (SelectedList.Count == 9)

{
summaryText = "No document selected.";
ultimaTextEditl.Text = summaryText;
return;

}

if (SelectedList.Count > 1)

{
summaryText = string.Format("Selected documents quantity {@}.",

SelectedList.Count);

ultimaTextEditl.Text = summaryText;
return;

}

var documentId = SelectedID;

var docSubtypeld = DocumentManager.GetDocumentSubtypeID(documentId);

var docSubtypeName = DictionaryManager.
GetRecord<DocumentSubtype>(docSubtypeld).Name;

summaryText = string.Format("Selected document subtype (id {@}) - {1}.",
documentId, docSubtypeName);

ultimaTextEditl.Text = summaryText;

}

}

Upon completion we compile a project, copy the created libraries into the module folder in the client
application Client/ClientModules/TradeTestSolution, reload metadata and open the created document
edit form:

Purchases o =B R

YRR @ & |0L01-28.06, Ssubtypes - | B - Gk % Max, rows: | 10000 2| & < Filters @

Identity |Mame

1 Moscow]

| »

Identity |Store.Name |Description Supplier.Name Creation date Transaction date Document creator... |Deleted
T 3 STORE #3564 Purchases (Put to stock) #53283, 28.06.2013 13:20:03 Benchmark Agent 2013.06.28 13:53:03 2013.06.28 13:53:03 xpoft

303 STORE #303 o 53261 Moscow Purchases (Put to stock) #53261, 25.06,2013 12:57:16 Benchmark Agent 2013.06.28 13:30:16 2013.06.28 13:30:16 xpoft
[; 364 STORE #364

374 STORE #374

The subtype of selected document
(id 53283) is PutToStock,

Edit forms of documents

If the required level of the setting for interface of the edit form of documents exceeds the possibilities
offered by Ultimate AEGIS® system (see section System tools for setting of the interface of screen
forms), own edit form can be created for any document.

The following hierarchy of classes is implemented in the system to facilitate the work:
L} BaseEditForm
=- Ef BaseDocumentEditForm

© 2018 Ultimate 352

ULTRAATE

Developer SOLIn

To implement the edit form for a document, it should be derived from BaseDocumentEditForm form,
and /RecordEditor<T>interface should be implemented, where Tis a document type.

The system for editing of the document will search for the form implementing /RecordEditor<T>
interface. If no such form appears to be in the system, the basic document edit form opens. If more than
one of such form appears to be in the system, the system throws an error. It allows avoiding unobvious
behaviour of the system in case of error in the system setting by the administrator.

The application developer may request opening of the document edit form through & DocumentHelper
class using EditDocument<T> and BeginEditDocument<T>methods, where Tis a type of document, which
edit form should be opened. The methods open modal and modeless edit forms correspondingly.

Let us consider creation of the edit form of documents by the example of Purchase type of documents:

[# Purchases(Put to stock) 52995 = BO=
[Put to stock 52995 Date |26.06.2013 15:4%:26 |~ en & - fh w4 oK Save Cancel
o i Articles | Supplier artides | Finandal artides control
Supplier identity |36 - |---||86, Benc... |£
Income date 26.06.2013 - e & -
i i w [aan s
sreaaay (B L Artide identity Price Quantity | Amount -
b ECPU Intel Xeon w3570 =+ 3,300.00 1 3,300.00 =
3 GB DDR.3-1600 DIMM SDRAM 1,100.00 2 2,200.00
PCIE video card 8,700.00 1 8,700.00
HDD 500GE SATA 7200RPM 3,57 8,700.00 1 8,700.00 «
By xpoft (Cawa), 2013.06.26 15:44:26 Comments:

In the module project create a new object Windows Form, derive it from BaseDocumentEditForm (from
Ultima.Client. Documents namespace) and implement /RecordEditor<T> interface:

public partial class PurchaseEditForm : BaseDocumentEditForm,
IRecordEditor<PurchaseDocument>

public PurchaseEditForm()
InitializeComponent();
o= PurchaseEditForm E@ [# PurchaseEditForm |E”E”E'

B[E « | ID:123123 Date v | Bxecutecommands.. %l v en & - dh v

[+ - = .. -
vommand controls will be here, fiicument creator information is being loaded... &iomments:

m

© 2018 Ultimate 353

Developer

ULTRAATE

SOLID

The data source should be connected to created form. For that purpose, add bindingSource control
element to it and connect Ultima.Metadata.PurchaseDocument metadata object to it:

PurchaseEditForm.cs [Design] & X

E# PurchaseEditForm

BE « ;1

[==]=]

- Execute commands.. %] - en & v b

= i3
IE‘Jurﬂmaru:l controls will be here. Efﬁi:ument creator information is being loaded. .. & omments:

& MNone

> ¥ Other Data Sources

w bindingSourcel

-

Data Source Configuration Wizard

i:—.l) Choose a Data Source Type

Where will the application get data from?

" © 8

Database Service Object SharePoint

Lets you choose objects that can later be used to generate data-bound controls.

Cancel

Data Source Configuration Wizard

A=)

i:—.l) Select the Data Objects

assembly, cancel the wizard and rebuild the project that centains the ohject.

What objects do you want to bind to?

Expand the referenced assemblies and namespaces to select your objects, If an object is missing froem a referenced

4 [@0 Metadata

a4 [1{} UltimaMetadata
[#= Adresses
[[]#2 Agent
[T1#= AgentAdress
|| *g PrivatePersonAttribute
[] #2 PurchaseArticleTablePartRow

» [¥]%2 PurchaseDocument

[#*z RawArticleTablePartRow

»

Add Reference...

Hide system assemblies

< Previgus

[Finish!}J I Cancel

e

Assign the added bindingSource element in the form parameters as DataSourse.

*@ Add Project Data Source...
Select a data so under 'Other Data

Sources' to connect to data.

© 2018 Ultimate

354

ULTRAATE

Developer SOLIn

Now we can add control elements to the form. In order to split the document properties and its table
part, we use SplitContainerControl control element of DevExpress library. Each of the control elements,
designed to display document properties, we connect through the property of DataBindings -> EditValue
element to corresponding dictionary properties in bindingSorce:

PurchasebditForm.cs [Design]™ & X

[# PurchaseEditForm == ES
BE « | ID: 123123 Date - Execute commands.. S] v en & - 4h v
: = v
Income date Q) - =l 4 g1 bindingSourcel -
Store I - B CreatorD
i
Supplier e £ I SubtypelD =
m B Deleted
ultil B Description | 4
o=. B IncomeDate -
o=, -
Add Project Data 5 Eur
@ ¢])l
@ (Selecting a BindingSource property binds to
the corresponding property of the list that t...
[y
i%ommand controls will be herE‘E:ﬁf:.'“e-*: creator information is being loaded. . ﬁfommenis:l g | WE
Tag (none)
Marme) ultimaDateEdit1

For DictionarylookupEdit control elements, using which the storehouse (StorelD) and supplier
(SupplierID) is displayed, we additionally select a dictionary type in DictionaryType property, which
records display — Ultima.Metadata.Store and Ultima.Metadata.Agent correspondingly.

In the left part of SplitContainerControl container, place BaseTablePartGridPanel, designed to display
and edit the data of the document table part. Set a type of the table part for it through TablePartType
parameter — PurchaseArticleTablePartRow. For its table (GridControl control element of
DevExpresslibrary) connect the table part as data source, having selected it through previously added
bindingSource:

PurchaseEditForm.cs [Design]* & X

@ PurchaseEditForm [= =[]
BE «~ | I - Executecommands.. &] - en & - AR -
Income date - : Articles
Store o £ o &
Suppler - o @E' GridControl Tasks
= Data Source Wizard
= Choose Data Source
R & None
gridControll @1 bindingSourcel
== gridview 1| (Click here to change view) = Amdés .
u 1 Icles
B Suppl I
(Click here to create a new level) Ad B FinControlArticles
| » @¥ Other Data Sources
Vi
Retrieve Details Run Designer Ap
O
Eri‘jommand controls will be here.é?ﬁi:‘.-“e-*: creator information is being loaded. .. ﬁiommems:: o -|-g Add Project Data Source...
9 Selecting a related list creates a new related
Le| BindingSource and binds to this BindingSo...
Unooc T FaTernTT CoTTaTTEr

© 2018 Ultimate 355

ULTRAATE

Developer SOLIn

Upon completion we compile a project, copy the created libraries into the module folder in the client
application Client/ClientModules/TradeTestSolution, reload metadata and open the created document
edit form:

(5 Purchases(Put to stock) #52995 = B R
*[Put to stock 52995 Date |26.06.2013 15:44:26 | = en & - ﬁ%:, oK Save Cancel
Income date |26.06.2013 - |15:11 - Artides
Store 1, Moscow v o #

Supplier 86, Benchmark Agent 2D Article identity Quantity |Amount |~
b | [C]ECPU Intel Xeon w3570 1 3,300,005

8 GB DDR.3-1600 DIMM SDRAM 2 2,200.00

PCI-E video card 1 8,700.00

HDD 500GE SATA 7200RPM 3.5 1 8,700.00
b

By xpoft (Cawa), 2013.06.26 15:44:26 Comments:
Table parts

There is sometimes no need to change the entire document edit form but one of its table parts should
be changed. In this case, own form can be created (control element) for any table part.

To implement the control element designed to edit of the table part, it should be derived from
BaseTablePartGridPanel control element and ITablePartEditor<T> should be implemented, where Tis a
type of table part.

The system for editing of the document table part will search for the control element implementing
ITablePartEditor<T> interface. If no such control element form appears to be in the system, the basic
document table part edit form will open. If more than one of such control element appears to be in the
system, the system will throw an error. It allows avoiding unobvious behaviour of the system in case of
error in the system setting by the administrator.

The application developer may request a control element for editing of the document table part through
LEF DocumentHelper class using GetTablePartControl<T> method, where T is a type of table part. The
method returns a control element for editing of the table part of specified type.

Let us consider creation of the control element for editing of the document table part by the example of
Article table part of document type Sale:

[# Sales(Released) #73839 o B =

+[Released 78899 Date 05.07.2013 17:28:42 |~ en & - 5%3 S0 QK Save Cancel

Draft artides

Agentidentity (99929¢| « |---|(9992960... £

Amount 31500.00| ~ o & -
Bt 11 (s (ST Artide identity Quantity |Original price | Sale price | Amount
b CPU Intel Xeon w3570 1 3,300.00 3,300.00 3,300.00
8 GE DDR.3-1600 DIMM SDRAM 2 1,100.00 1,100.00 2,200.00
PCI-E video card 1 8,700.00 &,700.00 8,700.00
HDD 500GE SATA 7200RPM 3.57 1 8,700.00 &,700.00 8,700.00

yallie (Mewa), 2013.07.05 17:28:42 Comments:

© 2018 Ultimate 356

ULTRAATE

Developer SOLIn

In the module project create new User Control object, derive it from BaseTablePartGridPanelcontrol
element, (from Ultima.Client.Controls namespace), implement ITablePartEditor<T> interface:

public partial class SaleArticleTablePartPanel : BaseTablePartGridPanel,
ITablePartEditor<ArticleTablePartRow>

{

public SaleArticleTablePartPanel()

{

InitializeComponent();

}

}
Do s
-=b
u} {u]

Also set a table part type for BaseTablePartGridPanel control element through parameter TablePartType —
ArticleTablePartRow.

For data mapping of plate part additionally place GridControl control element of DevExpress library and
connect the same Ultima.Metadata.ArticleTablePartRow as metadata object to it as the data source to
display table part data:

SaleArticleTablePartPanel.cs [Design] = X

- =
Q e y ==
H @_‘1‘ GridControl Tasks
=] Data Source Wizard
=] Choose Data Source
Ru @ MNone
od " ¥ Other Data Sources
B
e=2) (Click here to change view)
{Click here to create a new level)
Ad
Vig
Retrieve Details Run Designer Ap)
[
[
*§ Add Project Data Source...
B Select a data so under 'Ot ata
Le:d Sources' to connect to data.
Ull CLRTIT P arernt W UTTLdITTET
i~ ™y
Data Source Configuration Wizard M

i:—.l) Choose a Data Source Type

Where will the application get data from?

S o § 3

[iatabase Service Object i SharePoint

Lets you choose objects that can later be used to generate data-bound controls,

S

© 2018 Ultimate 357

Developer

ULTRAATE

SOLID

Data Source Configuration Wizard

i:—.l) Select the Data Objects

What objects do you want to bind ta?

Expand the referenced assemblies and namespaces to select your objects, If an object is missing frem a referenced
assembly, cancel the wizard and rebuild the project that centains the ohject.

> [C] Gl DevExpress.¥traGridv12.2
a O] Metadata
4 [C]{} UltimaMetadata

[[]#3 Adresses
[71#2 Agent

[[]#2 ArticleState
¥z ArticleTablePartRow

[[]*z Bank

|| " ArticlePriceTablePartRow

»

Add Reference...

Hide system assemblies

oy o=

"

Customize the created control element:

SaleArticleTablePartPanel.cs [Design] B X

H o

aridControli
Je=] (Click here to change view)

(Click here to create a new level)

Retrieve Details Run Designer

Upon completion compile a project, copy the created libraries into the module folder in the client
application Client/ClientModules/TradeTestSolution, reload metadata and open the document edit form:

[# Sales(Released) #78899 = B 2
«F Released 78899 Date |05.07.2013 17:28:42 |~ - oen & - @%3 =‘.>€ 0K Save Cancel
. . Draft artides | Articles
Agentidentity |999259¢| = || 9992960... £
Amount 31500.00 ~ o e
Store identity |114 ¥ [---|(114, ST... |£
> Find Clear
Artide identity Quantity Criginal p... | Sale price | Amount
CPU Intel Xeon w3570 1 3,300.00 3,300.00 3,300.00
5 GB DDR.3-1500 DIMM SDRAM 2 1,100.00 1,100.00 2,200.00
PCI-E video card 1 8,700.00 8,700.00 §,700.00
HDD 500GE SATA 7200RPM 3,57 1 8,700.00 8,700.00 §,700.00
By yalie (Newa), 2013.07.05 17:28:42 Comments:

© 2018 Ultimate

358

ULTRAATE

Developer SOLIn

Custom filter

If necessary it is possible to add the element to the filter of a list form by means of
GridPanel.FilterControl.AdditionalFilterControls

The event CustomfFilterEventArgs has a FilterActive parameter. For filtration at the switched-on general
filter, itis necessary to turn on the filter in the handler of an event at FilterActive = true:

private void GridPanel ApplyCustomFilter(object sender,
Client.Controls.CustomFilterEventArgs args)

{
if (args.FilterActive && OnlyDocumentArticlesChk.Checked)

{
var articleList = Articles.OfType<dynamic>().Select(a => (long)

a.ArticleID).ToIDList();
args.AddFilter<Article>(ar => articlelList.Contains(ar.ID));
}

}

To reset the filter there is a ResetFilters event:
GridPanel.ResetFilters += GridPanel_ ResetFilters;

private void GridPanel ResetFilters(object sender, EventArgs e)

{

OnlyDocumentArticlesChk.Checked = false;
}
Commands

Module command is an element, which can be added to the user interface (main menu) in the user
interface setting form. During loading of the module, the kernel polls all classes, derived from
BaseModule class, to get the list of commands.

Each module can export commands using two methods:

e having marked the method with Command attribute;

¢ having implemented GetCommands method, which must return a collection of commands (objects of
Command class).

We will create one more command as an example for opening of the list form of dictionary Vehicle (in
addition to existing one).

For that purpose create a new object Class in the project module, which will be called
TradeTestSolutionModule, derive it from BaseModule class (from Ultima.Client namespace) and
implement all of its methods:

[Export(typeof(IModule)), PartCreationPolicy(CreationPolicy.Shared)]
public class TradeTestSolutionModule : BaseModule

¢ public override string Description
¢ get { return "Commands of the Trade test solution module"; }
}
public override string Name
¢ get { return "Trade test solution"; }
}

© 2018 Ultimate 359

ULTRAATE

Developer SOLIn

public override System.Resources.ResourceManager ResourceManager

{
}

get { return Resources.ResourceManager; }

}

Now when our module is loaded, the kernel will receive all commands described in
TradeTestSolutionModule class.

Mark new command using Commandattribute :

[Command("GUID", "Name", "Description", "Category")]
public void CommandName(object sender, CommandEventArgs args)

{
}

Commandattribute has the following parameters:

(] GU/D—glObal ID of the format {6F9619FF -8B86-D011-B42D-00CF4FC964FF};

e Name —a name of the resource that keeps the command name;

e Description —a name of the resource that keeps the command description;

e Category — a name of the resource that keeps the command category. The category can keep
description of tree-like structure. The category can store the tree structure description, the parents
and children will be separated in this case with symbol "|", and the category itself will have the
format "level 1|level 2|level 3".

Create corresponding resources for the command in the properties of the module project. During the
first access, the file of resources will have to be created:

TradeTestSolution & X

Application

Build
Build Events

Debug
iThis project does not contain a default rescurcesfile.[CIick here to create one, ;
Services

Names of the resources Name will be used in the command:

TradeTestSolution + >

Application Strings = [y Add Resource -

Build

Build Events Name Value Cormment

Behin VehiclelistForm_category | TradeTestSolution

VehicleListForm_name open VehiclelistForm dictionary
*

Services

Various (not only text) objects can act as resources:

Application “[y Add Resource -
Build =l string? Ctrl+1
Build Events El Images Crl+2 Value Comment
Debug Icons Ctrl+3 :r}f TradeTestSolution
% Audio Ctrl+4 | open VehiclelistForm dictionary
[N Files Ctrl+5
services Other Ctrie6 |
Settings

© 2018 Ultimate 360

ULTRAATE

Developer SOLIn

Now, having created the resources, implement the method, opening previously created list form of the
dictionary Vehicle, and mark it with Command attribute:

// In the example, one and the same resource is used

// for command Name and Description.

[Command ("{33471BB9-6380-4F82-B17A-5A0EADADDFO9}", "VehiclelListForm_name",

"VehiclelListForm_name", "VehiclelListForm_category")]
public async void OpenVehiclelListForm(object sender, CommandEventArgs args)

{
}

Compile a project, copy the created libraries into the module folder in the client application
Client/ClientModules/TradeTestSolution, reload metadata and find the created command in the user
interface setting form in the specified category:

await DictionaryHelper.BrowseRecords<Vehicle>();

Available commands
X | | Find command

All (231) Command name Description Hotkey | Identity Icon

> Kernel (115) éopen VehideListForm dictionary open VehideListForm dictionary 33471bb3-6380-4f52-b17a-5a0ead4. .. ,,.4,
User dictionaries (74) i
User documents {17)

> User commands (8)
User totals (15)
Custom reports (1)
TradeTestSolution (1)

Custom screen forms

It is possible to create a screen form for the solution of any task. For that purpose we create new
Windows Form and derived it from the class CommonForm (from namespace Ultima.Client):

public partial class CustomForm : CommonForm

{
public CustomForm()
{
InitializeComponent();
}
}

In order to have a possibility to open the created screen form in the client application, add
corresponding command into previously created class, derived from BaseModule class:

[Command (" {BB8BOBA1-EE2B-4102-BB1C-BA958CAOF303}", "Name", "Descr", "Category")]
public void OpenMyClientModuleForm(object sender, CommandEventArgs args)

{
}

Now using the created form, one can get for instance information about current user:

[Import]
private IUserManager UserManager { get; set; }

new CustomForm().ShowChild();

private void simpleButtonl_ Click(object sender, EventArgs e)
{
/// We obtain the data on current user.
textEditl.Text = UserManager.CurrentUserID + ", "
+ UserManager.CurrentUser.RealUserName;

© 2018 Ultimate 361

ULTRAATE

Developer SOLIn

/// We obtain information about user's computer.
textEdit2.Text = UserManager.CurrentUser.MachineName +
UserManager.CurrentUser.OsUserName;

CustomForm = B 2R CustomForm

Show current user ID e

Shaow current user ID i:; 1, root

TECHDOCtechdocuser

The same information can be obtained by accessing directly the table of users in the database.
[Import]
private ITableSource DataContext { get; set; }

private void simpleButton2_Click(object sender, EventArgs e)

{
var id = long.Parse(textEdit3.Text);
var users =
from u in DataContext.GetTable<User>()
where u.ID == (id == null ? 1 : id)
select uj;
var user = users.Single();
if (user != null)
{
memoEditl.Text = “login:\t" + user.Login + "\r\n" +
“name:\t" + user.Name + "\r\n" +
"language (ID):\t" + user.LangID + "\r\n" +
“locked:\t" + user.IslLocked + "\r\n" +
"password expired:\t" + user.IsExpired;
}
}
CustomForm

= B &R CustomForm = B R

Show current user ID Show current user ID

Input user ID Get user data Inputuser ID |2 Getuser data

login: demo

name: Demo user
language (ID): 1
locked: False

password expired: True

Query forms for the parameters of interactive commands

If necessary it is possible to request the user who is carrying out interactive command to enter values for
additional parameters and use them in the future when they run the script. In this case, execution of the
command will be preceded with opening of the form for entry of additional parameters.

© 2018 Ultimate 362

ULTRAATE

Developer SOLIn

Additional parameters of interactive command Parameter scan be retrieved using standard form (flag
Parameters list), generated by the system, previously having added them to the list of the same
nameParameters:

?y User commands, 1449 o B &
«[User commands: 1449] nofiles - en Execute OK Save Cancel
Command Parameters
Caption Send a test message to a current user en = qQl
Guid 547de153-bb10-4d06-ba7a-62582a5%e075 --- N N N N N
Mame |Caption | Type Identity IsRequired |SaveHistory |String Size |SortIndex | DefaultValue |Referenced Dictionary ID
Seript Click here to edit the script... b |UserlD UserID Lang —NUMBER(18) 256 0 {none)
Folder User commands >
Parameters None (©) Parameter list Custom form

Or they can be requested using independently designed form (flag Custom form), in this case there is no
need to add parameters to the Parameters list, however it is necessary to design a form of parameters
independently. The standard (template) form of parameters looks like as follows:

Test command = = 52
Amount 1234,00 |~
Aftachments file +
Mote

Ok Cancel

e “OK” button (combination of keys|Cul +Enter]) — closes a form of inquiry of parameters and starts
command execution;

e “Cancel” button — closes the form request parameters and cancels the run command.

Possibilities of a sample form of parameters are limited, but this form doesn’t demand programming. If

the team needs the parameter of non-standard type or if the form of parameters has to display

additional data, the form of parameters should be done independently.

We will consider implementation of the second, more difficult option, on the example of the user
command which sends the message to the user who executing it. In the message text it is necessary to
display the user name corresponding to the identifier entered in the form of additional parameters.

In the project of the module we create a new object of Windows Form, we inherit it from a class
BaseParamForm (from namespace Ultima.Client.ParamForms) also we determine form parameters:
[ParamForm(>’61A32313-4DA6-495F-8062-3CF6QED38EDE”,”The first test form”,

“Enter parameters in the first test form”)]
public partial classTestParamForml: BaseParamForm

{ public TestParamForml()
{
InitializeComponent();
}
}
o2 TestParamFormil s =R TestParamForml = =R =<

oK Cancel

© 2018 Ultimate 363

ULTRAATE

Developer SOLIn

ﬁ In the property Parameters of BaseParamForm classunder RecordID key the object code from
which the command was started is transfered.

Add SpinEdit control element to the screen form to input of the user identifier:

TestParamForml EI@

oK Cancel

User identity 1

4k

//Receive the value entered in SpinEdit control element.
Protectedoverride void GetParameters()

{
}

And creation of parameter entry form is completed. Compile a project, copy the created libraries into
the module folderin the client application Client/ClientModules/TradeTestSolution, reload metadata and
transfer to command edit. Having set Custom form flag for property Parameters select the created
additional parameter entry form from Parameter form list:

Parameters[”UserID”] = spinEdit.Value;

?p) User commands, 1449
[User commands: 1449) nofiles ~ en | Execute
Command
Caption Send a test message to a current user en
Guid 547de 153-bb10-4d06-ba 7a-6 25823592075
Script Click here to edit the script. ..
Folder User commands -
Parameters () None () Parameter list (©) Custom form
Parameter form - | X
Form name
First test form
Second test form b

4

© 2018 Ultimate 364

ULTRAATE

Developer SOLIn

After thatitis possible to pass to script edit which will send a message to the user:

Script text | Resources | Generated Text {read-only) | Generated Resx {read-only) | MEF Cache (read-only)
using System.Collections.Generic;

2 |uzing System.ComponentModel.Composition:

3 |uzing Ultima.Client;

4 uzing Ultima.Client.hActions;

5 |using Ultima.Server.Data;

6 | using Ultima.Collections;

8 | namespace Ultima.Scripting

o ¢
10 puklic partial class SendTestMessageToCurrentUser
12 [Import]
13 private IUserManager UserManager { get; =et; }
15 [Import]
16 private IUserMessages UserMessages { get; set: }
18 public woid Execute (IDictionary<string, object> parameters, IList<ClientAction> clientictions)
19 R

0 decimal dUserId = default (decimal);

/ try to gest user ID from parametsrs
if (!parameters.TryGetValue|"Us=srID", out dUserId))

return;
}

long userId = System.Convert.ToInté4 (dUserId);

var userName = "Unknown ussr';

L L BRI BRI BRI B BD BRI BD BRI B
[SIT- I R T R

(]
RN

=nt user name using UltimaDbManager
3 db = new UltimaDbManager|())
34
35 Var query = "select Name from KERNEL.USERS where ID = :vID™
36 userlName = db.SetCommand (gquery, db.Parameter("wID", userId)).ExecuteScalar<string>():
37 }
38
38 /#/ =end messages for currsnt ussr
40 UserMes=ages.CreateUserMessage ("You input {0} as identity number. This user is {1}.", userId, userName):
41 }
42 }
43 |}

Obtain user ID from additional parameter form, request the user name corresponding to this ID and send
a message:

e ULTIMA Client: root@localhost:8192 Tools | = =
-
Kernel Items Dictionaries PrintForms Commands Developer Administrator

23

&
Send a test messagelia current user §‘
1

Test commands

|
Windows ~ | =] &

v

Enter parametres in furst text form = B2
OKI& Cancel
User identity 2.2

v

| |
| | Windows ~ | [18:09 You input 2 as identity number, This user is Demo. ‘. | ‘

The data entered into the parameter form can be checked for a validity by means of the following option
GetParameters method:

GetParameters(string title,
IEnumerable<ScriptUserParameter> parameters,
IDictionary<string, object> paramValues,
Action<ParameterValidationHelper> validationMethod)

© 2018 Ultimate 365

ULTRAATE

Developer SOLIn

ParameterValidationHelper class allows transfering parameter values to the validation method, and back
—results of check with any necessary level of detail, for example, to highlight the wrong parameters in
the form through ErrorProvider, for example:

ParameterValidationHelper =>

{

var x = ParameterValidationHelper.Parameters["Password"];

if (x.ToString().Length < 5)

{

ParameterValidationHelper.ReportError(”’Password”, “, “Password is too

short™);

}
}

Application main form

The window, which contains the main menu and tabs of all other commands and windows, is called as
the main form of the client application. Life cycle of the application is tied to this window: when the
user closes the window, the application comes to the end. By default, the main window of the
application has the interface described in the user manual.

If the application needs the main form which looks in a different way, it is possible to realize it
independently. We recommend to use this only in exceptional cases, as for this purpose it is necessary
to refuse templates of the main menu, standard modules (basic module and the developer module) and
other useful functionality, provided by the standard main form.

Forindependent realization of the main application form the following is required:

e To develop the form of the desired type using the Visual Studio forms designer

e To realize interface methods IMainForm in the form class.

e To export the form: [Export(typeof(IMainForm)), PartCreationPolicy(CreationPolicy.Shared)]

e Additionally, it is necessary to create a new class (commonly called as Program), which implements
the entry point to the application. It is necessary to import our formin it:

[Import]
private Lazy<IMainForm> MainForm { get; set; }

e We create the method in this class, exporting the entry point (it has to be exactly one):

[Export(ContractNames.EntryPointMethod)]
public Ultima.Client.CloseReason Main(string[] commandLineArgs)

{
Application.Run(MainForm.Value as Form);
return MainForm.Value.CloseReason;

' Itis important that the method exporting the entry point had a certain signature. It has to have
= the only one parameter — the massif of lines, and the returned value has to be the type of
Ultima.Client.CloseReason.

The behavior when closing the form is defined by CloseReason value:
e Normal — the application is closed
e Restart — the application is restarted.

© 2018 Ultimate 366

ULTRAATE

Developer SOLIn

Mobile application

The client mobile application is developed in C# using Xamarin =# http://xamarin.com/ with
employment of mobile interfaces, which are compiled into a separate library mobilemetadata.dll
(ultimalib.dll and mobileinterfaces.dll libraries are required too).

There are two connection options for Android client: Zyan and web-services.

Two strings are generated for web-services: ordinary WebServices.dll and transferable
WebServices.Portable.dll. For Android-application, the second assembly should be selected and PCL-
client should be used for connection to the database. An example of PCL-client, which works on PC:

// Compile using:

// c:\Windows\Microsoft.NET\Framework\v4.0.30319\csc test.cs /r:WebServices.dll

// /r:ServiceStack.Client.dll /r:ServiceStack.Interfaces.dll /r:System.Runtime.dll
// /r:ServiceStack.Pcl.Net45.dl1

using System;

using ServiceStack;

using Ultima;

using Ultima.WebServices;

class Program

{

static void Main()

{
Net4@PclExportClient.Configure();

var client = new JsonServiceClient("http://localhost:8337/");

var response = client.Get<GetNowResponse>(new GetNow());

Console.WriteLine("response: {0}, null: {1}", response, response == null);
if (response != null)
{

Console.WriteLine("nowResponse: {0}, isoTime: {1}", response,
response.IsoTime);

}
}
}

For mobile application, the second call Configure will be in the first string. Besides, instead of
Get<Response>(), await GetAsync<Response>() should be used.

System tools for setting of the appearance of screen forms_2

The layout of standard screen forms of created dictionaries and documents can be customized.

For example, the layout of the filter of records can be - = =
changed for the dictionary (log of documents) list form. — —
Max. rows: 000 o & =+ Filters| &
Add or remove filters. .. @%

The layout of the edit form for dictionary records - = =

(document) can be changed. o @ - <>€|} ok e o |

© 2018 Ultimate 367

http://xamarin.com/

ULTRAATE

Developer SOLIn

Or layout of the edit form for the link table records. i o e s e o @ 5
Agent ¥ |- £ X
Additional adress | P £ X
Adress
User comment
B Cusb:mizels oK Cancel

All changes are made using single tool —forms for modification of the layouts "Customize layout":

[# Agents, 52 = = Customize layout
of -~ Agents: 52 en & - 9€ oK Save Cancel " lile] Language: |en - Load Save Reset Close
Main | Additional adresses Hidden Items | Layout Tree View

P Root
© Name Customization Name
Phone number Text Name
E-mail TextAlignMod: UseParentOptions

2 Delivery adress Textlocaton Left
: Hidden Items > TextSize 74,13 =
: J Empty Space Item TextToContro 3

. A Label

u N o Textisible True >
eparator

....H. Splitter Hame

the changes being made can be revoked or repeated, in case of revocation, using corresponding
buttons ||~

there is own layout for each of system languages. Selection of the language is carried out in the
control element "Language";

"Load" button performs loading of the layout for the language selected in the field Language. If no
layout has been created yet for loaded language, but the form has the layout for another language -
this existing layout will be loaded, however the names of the metadata objects properties will be
loaded corresponding to the layout language;

"Save" button performs saving of the edited layout for the language selected in the field "Language".
It allows, e.g. constructing the layout only one time for one of the system languages and then just
localizing it for another language;

LT] If the layout of the screen form is loaded for the system language, e.g English (en), the

] changes are made to it, and then another system language is selected, e.g. Russian (ru) and
the layout is saved, the screen form layout for English language will remain unchanged, and
the layout for Russian language will be changed.

"Reset" button resets all changes ever made to the layout of the language selected in the field

"Language";

"Close" button closes the form for layout modification, not saving the changes made;

in the tab "Layout Tree View", the elements are grouped into tree view, which are used (or available

for use) in the screen form layout:

= the elements already located on the screen form are in Root branch;

© 2018 Ultimate 368

Developer

property (document head) and standard elements:

ULTRAATE

SOLID

= in Hidden Items branch, the elements are present, which can be used in the screen form, just by
drag-and-drop on its layout. It can be both the properties removed from the layout of dictionary

[# Agents, 52 - =

«E + | Agents: 52 ~en B - @ oK Save Cancel

Main | Additional adresses

[alifs | Language: |en

Hidden Items | LayoutTree View

> Load Save Reset

E-¢P Root

{ L@ Name

& Phone number
@ E-mai

@ Delivery adress
=@ Hidden Items

Empty Space Item

[separator
Ll Splitter

Close

e the list of properties of the element, selected on the screen form layout or in Root branch in the tab
"Layout Tree View" of form "Customize layout", is located on the right in the tab "Layout Tree View".

The properties can be arranged by groups

4l orin alphabeticorder 3= [Z1);

¢ the content of tab "Hidden Items" duplicates the content of Hidden Items branch in the tree in the tab

"Layout Tree View".

The elements on the layout of screen form can be dragged and dropped:

[# Agents, 52 - = -
+«E <+ | Agents: 32 - en B - 9{ oK Save Seer| [alife | Language: |en > Load Save Reset Close
Main | Additional adresses Hidden Items | LayoutTree View

=P Root SizeConstraint Default -
¢ @ Name > Spacing 0,0,0,0
| @ Emai | @ Phone number visibility Always
I} | Empty Space Item 4 Mame |
[_‘, L} [\\f I} 9 E-mail Mame Emailltem =
. i @ Delivery adress 4 Text B
=@ T?den Ttems Customization E-mail
d Empty Space [tem Text E-mail -
- Label
I|_'| Separator Hame
-ﬂ» Splitter
And their size can be changed:

[Agents, 52 = = 3
+E + | Agents 52 ~en H - s 0K Save Cancel [allis] Language: |en > Load Save Reset Close
Main | Additional adresses Hidden Items | LayoutTree View

=-¢? Root SizeConstraint Default -

& MName

2 Phone number
Empty Space Item
& E-mail

@& Delivery adress

=@ Hidden Items

7| Empty Space Item
- A Label

II_—I Separator

-4@» Splitter

> Spadng 0,0,0,0
Visibility Always
4 Name
Name Emailltem
4 Text
Customization E-mail
Text E-mail
Hame

(|

1

If standard screen forms and functionality of layout editor are insufficient, own list form or edit form can
be constructed independently in any .NET compatible language in any development environment

suitable for that.

The screen form should be created in the shared module of client application.

© 2018 Ultimate

369

ULTRAATE

Developer SOLIn

Ultima control elements
The system Ultimate AEGIS® provides to the applied developer a number of classes, forms and elements
of management for realization of screen logic and the user interface.

In order to get access to Ultima control elements in Visual Studio , we have to create a folder (e.g.
Ultima) in the Toolbox and add the control elements into it from the library BaseClientLibrary.dll
(Choose Items -> Browse (at the tab .NET Framework Components) -> BaseClientLibrary.dll).

CommonForm

CommonForm (from Ultima.Client namespace) is a common parent for all
screen forms of a client application. The form supports saving coordinates
and sizes, saving and loading form's settings, displaying the form's status.

CommaonForm EI@

Also, the form's property AutoSetTabOrder allows setup a switching
between controls of the form using the Tab key:

o if true (default value), the switching order is specified automatically (top to down, right to left);
o if false, the order specified by application programmer is applied.

CommonForm basic functions also include the ReadOnly property. The read-only mode is active during
background processes: DisplayFormStatus(Strings.Loading) or BaseEditForm.SaveAndLoadRecord.

Checking ReadOnly = true leads to a recursive switching between the form's elements. Unchecking
ReadOnly = false return the settings to the original state (in the process, if a control was initially in a
ReadOnly mode, it will not be suddenly unblocked).

Since in WinForms, there is no a regular ReadOnly property similar to the Enabled flag, the mode is
supported with the help of a set of adapter-classes. The base set supports the most spread controls:
TextEdit, MemokEdit, UltimaTextEdit, CheckEdit, RadioGroup, GridControl, various container elements.

To add a support of a new control element, it takes only to define in the client application module an
adapter-class that supports the given element:

using System;

using System.Windows.Forms;

using DevExpress.XtraEditors;

namespace Ultima.Client.Controls.ReadOnly

{

[PartCreationPolicy(CreationPolicy.NonShared)]
internal class ReadOnlyAdapterCheckEdit : ReadOnlyAdapterBase

{
public override bool Supports(Control control)

{
}

public override bool IsReadOnly(Control control)

{
}

protected override void SetReadOnly(Control control, bool readOnly)

{
}

return control is CheckEdit;

return (control as CheckEdit).Properties.ReadOnly;

(control as CheckEdit).Properties.ReadOnly = readOnly;

© 2018 Ultimate 370

ULTRAATE

Developer SOLIn

The adapter will be automatically recognized by MEF catalogs and used if needed. To do this, it is
sufficient to inherit the class from ReadOnlyAdapterBase or to make the class to explicitly export the
IReadOnlyAdapter interface implementation. In addition, the NonShared creation policy must be
specified for the class.

ZF When inheriting from the CommonForm, the following methods and properties of the form's class

may be helpful to application programmer:

e ShowChildAsync() —an asynchronous variant of the ShowChild method. Displays the form as MDI child
of the main form and waits till its settings are loaded,;

o AfterLoadSettings —event that occurs after the form's settings are loaded;

e AfterSaveSettings —event that occurs after the form's settings are saved;

e ResetSettings —event that occurs after the form's settings are reset.

One also can redefine the following methods and properties of the CommonForm:

e ShowChild() — show the form as MDI child of the main form;

e OnloadAsync(EventArgs args) — an asynchronous variant of the OnlLoad method. If in the applied
code, there is a need to make particular server calls while loading a form, e. g., to load a record or read
a constant, these calls are to be done within this method;

e FormSettingsKey of string type —returns a key, under which the form settings are saved. As a rule, this
is a class name, but it may contain some extra characters;

e DisplayFormStatus(string text) —displays a panel with the message text specified (e. g., "Loading..."):
= text—message text;

e ClearSettingsBeforeSaving of bool type —returns true, if the collection needs to be cleared to save the
form's settings;

e RestoreWindowBounds of booltype —returns true, if the form is to restore the window sizes;

e SaveSettings() —saves form's settings in the FormSettings collection;

e LoadSettings() —loads form's settings from the FormSettings collection.

BaselistForm

BaseEditForm form (from Ultima.Client namespace) is derived from BaselistForm ||| |[n3a)
CommonForm and is common parent for all edit forms of dictionaries and
documents:

EF CommonForm

B- &F BaselistForm B Select

The form is used to display the record list and their choice.
T In BaselistForm form class IRecordBrowser and IRecordSelector interfaces are realized.

In derivation from BaseListForm form the following methods and properties of its class can be useful to
the application developer:
e Mode of ListFormShowMode type— returns the mode of the list form which can have one of the
following values:
= Browse —record browse mode;
= SelectSingle —single record select mode;
= SelectMultiple — several record select mode;
e SelectRecord(long? id = null, LambdaExpression filter = null) —selects a record and returns its identifier
or null, if record wasn’t selected:
= jd —arecord identifier on which the cursorin the list form will be set (option parameter);
= filter — expression describing the filter which will be used to the records removed in the list form
(option parameter);

© 2018 Ultimate 371

ULTRAATE

Developer SOLIn

e SelectRecords(LambdaExpression filter = null) — selects several record and returns their identifiers or
null, if records weren’t selected:
= filter — expression describing the filter which will be used to the records removed in the list form
(option parameter);
e Browse() —opens the list form, and loads records.

Itis also possible to redefine the following methods and properties of BaseListForm form class:

e SelectedID of long type—returns a code of the selected record if the form was caused to select;

e SelectedList of type IDList —returns codes of the selected records if the form was caused to select;

e LoadRecords() —loads records;;

o ApplySelectionFilter(LambdaExpression implicitFilter) —applies an implicit filter expression to the form
records list:
= implicitFilter —expression describing the filter used to the form records list;

e [ocateRecord(long id) — sets the cursor on the specified record, true in case of success, differently —
false returns:
= jd —the record identifier.

BaseEditForm

BaseEditForm (from Ultima.Client namespace) is inherited from CommonForm and is a common parent
for all edit forms of dictionaries and documents:

EF CommonForm

=- EF BaseEditForm

The form supports multilinguality, attachments, printing, opening the list form of edited object, cancel
and saving changes made. The form includes also a toolbar with all the functions specified:

BaseEditForm EI@

BE « 1:1231232 @l - en & - oK Save Cancel

WO @O O

The control element has the following specific properties:
IDLabelVisible —if true, 1D of the object opened in the form is displayed (3); Test UtimaClientBasekditForm -
ListButtonVisible — if true, the button to open a list form of the object [:2/™ [D]#

opened in the BaseEditForm is displayed (1); ET -
o MultilingualLabelVisible — if true, multilanguage label is displayed (5); BottormPanelVisible True
e PrintButtonVisible —if true, the print button is displayed (6); IDLabelVisible True
.. . R . ListButtonVizible True
e RecordBarVisible —if true, the toolbar is displayed; Multilingual .
e ShowAttachments —if true, the attachments button is displayed (4); MultilingualLabelVisible True
PrintButtonVisible True
RecordBarVizible True
ShowAttachments True

UndoButtonVisible True =

UndoButtonVisible — if true, the button to cancel any changes made (but not saved) to the object
opened in the formis displayed (2).

&P In the BaseEditForm form class, the [RecordEditor interface is implemented, as well as the
DictionaryManager is imported.

When inheriting from the BaseEditForm, the following methods and properties of the form's class may
be helpful to application programmer:
e DataRecordChanged — event that occurs after the data of the record being edited have been changed;

© 2018 Ultimate 372

ULTRAATE

Developer SOLIn

Print —event that occurs after the Print button is clicked;

Export —event that occurs after the Export button is clicked;

LoadedRecord — event that occurs after a record is loaded.

SaveRecordAndClose() —saves changes made and closes the form;

ID of long type —code of a current dictionary (document) record being edited;
DataRecord of IBusinessObject type —a current dictionary (document) record being edited.

One also can redefine the following methods and properties of the BaseEditForm class:

GetAvailableToolbarlLinks() —allows adding extra buttons to the toolbar;
ValidateRecord(ValidationErrorCollection errors) — allows redefining the record check before saving in
the database:

= errors — collection of errors;

ShowValidationErrors() — determines the logic for displaying validation errors in the form, e. g., in
order to single out validation errors via a non-routine method;

EditRecord(long id) —opens the specified record to edit in the modal mode:

= jd —record ID;

InsertRecord(IDictionary<string, object> parameters) — initiates creation of a record in the modal
mode:

= parameters —parameters of the newly-created record;

CloneRecord(long baseld) —clones the specified record in the modal mode:

= paseld — D of the record to be cloned;

ViewRecord(long id) —displays the specified record as "read-only" in the modal mode:

= jd —record ID;

BeginEditRecord(long id) —opens the specified record to edit in the modeless mode:

= jd —record ID;

BeginlnsertRecord(IDictionary<string, object> parameters) — initiates creation of a record in the
modeless mode:

= parameters —parameters of the newly-created record;

BeginCloneRecord(long baseld) — clones the specified record in the modeless mode:

= paseld — D of the record to be cloned;

BeginViewRecord(long id) — displays the specified record as "read-only" in the modeless mode:

= jd —record ID;

Modified of bool type —redefines the check, if the record was modified;
InternalCreateRecord(IDictionary<string, object> parameters) — redefines creation of a new dictionary
(document) record:

= parameters —parameters of the newly-created record;

InternalLoadRecord(long id) — redefines loading of the new dictionary (document) record:

= jd —record ID;

InternalSaveRecord() —redefines saving of the new dictionary (document) record;
OnDataRecordPropertyChanged(string propertyName) — the method is called when the specified
property of a dictionary (document) record has been changed:

= propertyName —name of property;

EndEdit() —applies changes introduced by user to the current record loaded. E. g., if user is editing the
form's text field, the field's value is copied to the current record;

RejectChanges() — cancels changes introduced by user to the record and returns the record to its
original state;

BrowseRecords() —shows a list form of a record opened in the edit form.

© 2018 Ultimate 373

ULTRAATE

Developer SOLIn

BaseParamForm

The form BaseParamForm (from namespace F R — ==
Ultima.Client.ParamFormes) is derived from CommonForm is common ok Cancel
parent for all edit forms of parameters query of interactive

commands:

LEF CommonForm

=- Ef BaseParamForm

The form is used to create its own forms of parameters query of interactive commands (the process is
described in detail in chapter Form of additional command options).

ZF When you deriving from the form BaseParamForm the following methods and properties of its class
can be useful to the application developer:
e RequestParameters(string title, IDictionary<string, object> parameters) — allows filling a collection of
parameters with values. It turns true, if the “OK” button was pressed, and false otherwise:
= title —heading of the parameters form;
= parameters — collection of parameters for filling.

It is also possible to redefine the following methods and properties of a class of the BaseParamForm
form:

e GetParameters() —allows filling the collection of parameters with values;

CheckData() — defines the check of parameters before copying them in the collection of values;
OkButtonClick() —is called when pressing "OK" button;

CancelButtonClick() —is called when pressing "Cancel" button;

GetAvailableToolbarLinks() — allows adding additional buttons in form toolbars (initially the form
contains only the “OK” and “Cancel”buttons).

BaseDictionaryListForm

The form BaseDictionaryEditForm (from namespace Ultima.Client.Dictionaries) is derived from
BaseEditForm and is common parent for all edit forms of dictionaries:
LEF CommonForm
B- EF BaselistForm
=- &F BaseDictionaryListForm

On aform the element of management SplitContainer, is placed, which keeps the position in settings of
the form. The left panel of the containeris reserved under placement of the filter (the table or a tree) if
to leave this area empty —it will be hidden in the total form.

|| BaseDictionaryListFarm =N =R

Drop a tree or a grid control here.

Mote: if this panel iz empty,
it won't be displayed at runtime.

O select

u)

The form is used for creation of list forms of the dictionary with screen logic, significantly other than the
list form by default. To create a master-detail of the interface on the basis of a list form it is
recommended to use BaseFlatDictionarylListForm or BaseTreeDictionarylListForm by default.

£} In the class of BaseDictionaryListForm form, DictionaryManager is imported.

© 2018 Ultimate 374

ULTRAATE

Developer SOLIn

The class of BaseDictionaryListForm form has the following properties:

e CustomFormText of type bool—returns true, if the property Text of the form has to remain so as it has
been specified at its development. Otherwise the system will create the form heading
independently.

TIt is also possible to redefine the following methods and properties of a class of the
BaseDictionaryListForm form:
e DictionaryType of the type Type —type of the dictionary which is displayed by the form.

BaseFlatDictionaryListForm

BaseFlatDictionarylListForm form (from Ultima.Client.Dictionaries namespace) is derived from
BaseDictionaryListForm and is common parent for all list forms of flat dictionaries:
LEF CommonForm
=- [BaselistForm
=- EF BaseDictionaryListForm
=- 5F BaseFlatDictionaryListForm

The most frequent reason for creation of own list form of the dictionary is implementation of the
master-detail interface. Therefore, BaseFlatDictionarylListForm hosts already SplitContainer control
element derived fromm BaseDictionarylListForm , on which right panel DictionaryGridViewPanel, control
element is located, designed to view the list of flat dictionary records. The element contains a toolbar
with the entire standard functionality - set of columns, filters, etc. Only left panel, which is reserved for
location of the filter, is available for use to the application developer. If this area is left empty — it will
be hidden in the final form:

|| BaseFlatDictionaryListForm EI@

. F & Q| Execute commands... = -

g IS
Drop a tree or a grid cantrol here.

Mote: if this panel is empty,
it won't be displayed at runtime.

Command contrals will be here,

O select

u)

To implement own list form of flat dictionary, it should be derived from BaseFlatDictionaryListForm
form and IRecordBrowser<T> and IRecordSelector<T> interfaces should be implemented, where T is a
dictionary type. The system will search for the form implementing IRecordBrowser<T> interface to
display the list of records, and for selection of the records it will search for the form implementing
IRecordSelector<T>. If no such form appears to be in the system, the basic dictionary list form will open.
If more than one of such form appears to be in the system, the system throws an error. It allows avoiding
unobvious behaviour of the system in case of error in the system setting by the administrator. The
process of creation of own dictionary list form is detailed in the chapter List forms of dictionaries.

&} The class of BaseFlatDictionaryListForm form implements the following methods and has the

following properties:

e DictionaryType, type type returns a dictionary type;

e SelectedID, type long returns ID of dictionary record selected in DictionaryGridViewPanel control
element;

e SelectedList, type IDList returns a list of IDs of dictionary records selected in DictionaryGridViewPanel
control element;

e LoadRecords() loads the dictionary record into DictionaryGridViewPanel control element;

© 2018 Ultimate 375

ULTRAATE

Developer SOLIn

e GridPanel, type DictionaryGridViewPanel it returns DictionaryGridViewPanel control element. Using
this property, the values can be set for instance for DictionaryGridViewPanel, properties, while
customizing the interface of this control element:

GridPanel.Properties.LimitCounterVisible = false;
GridPanel.Properties.GroupButtonVisible = false;
GridPanel.Properties.PrintButtonVisible = false;
GridPanel.Properties.IDEditVisible = false;

GridPanel.Properties.CommandsMenuVisible = false;

BaseTreeDictionaryListForm

BaseTreeDictionaryListForm form (from Ultima.Client.Dictionaries namespace) is derived from
BaseDictionarylListForm and is common parent for all list forms of tree dictionaries:
EZF CommonForm
=- ZF BaselistForm
=- EF BaseDictionaryListForm
=- 5F BaseTreeDictionaryListForm

The most frequent reason to create own list form of the dictionary is implementation of the master-
detail interface, which is also called a filter. Therefore, BaseTreeDictionaryListForm form already hosts
SplitContainerBaseDictionarylListForm control element derived from , on which right panel
DictionaryTreeViewPanel control element is located, designed to view the list of tree dictionary records.
The element contains a toolbar with the entire standard functionality - set of columns, filters, etc. Only
left panel, which is reserved for location of the filter, is available for use to the application developer. If
this areais left empty —it will be hidden in the final form:

|| BaseTreeDictionaryListForm EI@

B f & Q| | Execute commands...~ | & ~ -

Drop a tree or a grid control here. it

Mote: if this panel is empty,
it won't be displayed at runtime.

B gelect

ju)

To implement own list form of tree dictionary, it should be derived from BaseTreeDictionaryListForm
form and IRecordBrowser<T> and IRecordSelector<T> interfaces should be implemented, where T is a
dictionary type. The system will search for the form implementing IRecordBrowser<T> interface to
display the list of records, and for selection of the records it will search for the form implementing
IRecordSelector<T>. If no such form appears to be in the system, the basic dictionary list form will open.
If more than one of such form appears to be in the system, the system throws an error. It allows avoiding
unobvious behaviour of the system in case of error in the system setting by the administrator.

LEF The class of BaseTreeDictionaryListForm form implements the following methods and has the

following properties:

e DictionaryType, type type returns a dictionary type;

e SelectedID, type long returns ID of dictionary record selected in DictionaryTreeViewPanel control
element;

e SelectedList, type IDList returns a list of IDs of dictionary records selected in DictionaryTreeViewPanel
control element;

e LoadRecords() loads the dictionary record into DictionaryTreeViewPanel control element;

e TreePanel, type DictionaryTreeViewPanel returns DictionaryTreeViewPanel control element. Using this
property, the values can be set for instance for DictionaryTreeViewPanel properties, while customizing
the interface of this control element.

© 2018 Ultimate 376

ULTRAATE

Developer SOLIn

BaseDictionaryEditForm

The form BaseDictionaryEditForm (from namespace Ultima.Client.Dictionaries) is derived from
BaseEditForm and is common parent for all edit forms of dictionaries:
EZF CommonForm
B- ZF BaseEditForm
=- 5} BaseDictionaryEditForm

The form has implemented support for the commands on dictionary record. The form contains also a
toolbar with the functionality enumerated and derived from BaseEditForm:

| BaseDictionaryEditForm EI@

| e [ID:123123) ~+ en (& ~+ | Execute commands.. OK Save Cancel
©)

B ommand controls will be here.

ju)

To implement own edit form for dictionary records, it should be derived from BaseDictionaryEditForm
form, and IRecordEditor<T> interface should be implemented, where T is a type of dictionary. The
system for editing of the dictionary record will search for the form implementing /RecordEditor<T>
interface. If no such form appears to be in the system, the basic dictionary record edit form will open. If
more than one of such form appears to be in the system, the system throws an error. It allows avoiding
unobvious behaviour of the system in case of error in the system setting by the administrator. The
process of creation of own dictionary edit form is detailed in the chapter Edit forms of dictionary
records.

The control element has the following specific properties (the properties derived from BaseEditForm

are described in the corresponding section):

e CommandsMenuVisible — if true, a button is displayed for the list of commands on dictionary record
(1);

e QuickCommandsVisible — if true, a toolbar is displayed for quick access to the commands at the form
bottom (2).

L} The class of BaseDictionaryEditForm form has the following properties:
e DictionaryType, type type returns a dictionary type;
e DataRecord, type IDictionaryRecord returns a dictionary record opened in the form.

BaseDocumentlListForm

The form BaseDocumentlistForm (from namespace Ultima.Client.Documents) is derived from
BaselistForm and is common parent for all list forms of documents:
EZF CommonForm
=- ZF BaselistForm
B- 5 BaseDocumentEditForm

© 2018 Ultimate 377

ULTRAATE

Developer SOLIn

On a form the element of management SplitContainer, is placed, which keeps the position in settings of
the form. The left panel of the container is reserved under placement of the filter (the table or a tree) if
to leave this area empty —it will be hidden in the total form.

BaseDocumentListForm EI@

Drop a tree or a grid control here.

Mote: if this panel is empty,
it won't be displayed at runtime.

B selact

u)

The form is used for creation of list forms of the documents with screen logic, significantly other than
the list form by default. To create a master-detail of the interface on the basis of a list form it is
recommended to use BaseFlatDocumentListForm by default.

5T In the class of form BaseDocumentListForm DocumentManager is imported.

When you deriving from the form BaseListForm the following methods and properties of its class can be

useful to the application developer:

e CustomFormText of type bool—returns true, if the property Text of the form has to remain so as it has
been specified at its development. Otherwise the system will create the form heading
independently.

Itis also possible to redefine the following methods and properties of a class of the DocumentListForm
form:
e DocumentType of the type Type —type of the dictionary which is displayed by the form.

BaseFlatDocumentListForm

BaseFlatDocumentlistForm form (from Ultima.Client.Documents namespace) is derived from
BaseDocumentListForm and is common parent for all list forms of documents:
EZF CommonForm
=- ZF BaselistForm
B- EF BaseDocumentListForm

=- S BaseFlatDocumentListForm

The most frequent reason to create own list form of the documents is implementation of the master-
detail interface. Therefore, BaseFlatDocumentListForm form already hosts SplitContainer control element
derived from BaseDocumentListForm , on which right panel DocumentGridViewPanelcontrol element is
located,, designed to view the list of documents. The element contains a toolbar with the entire
standard functionality - set of columns, filters, etc. Only left panel, which is reserved for location of the
filter, is available for use to the application developer. If this areais left empty — it will be hidden in the
final form:

BaseFlatDocumentListForm EI@

& v | | Execute commands..» ® | & - | i =

Drop a tree or a grid control here. g

Mote: if this panel is empty,
it won't be displayed at runtime.

B gelect

© 2018 Ultimate 378

ULTRAATE

Developer SOLIn

To implement own list form of documents, it should be derived from BaseFlatDocumentListForm form
and /RecordBrowser<T> and [RecordSelector<T> interfaces should be implemented, where T is a
document type. The system will search for the form implementing IRecordBrowser<T> interface to
display the list of documents, and for selection of the documents it will search for the form
implementing /RecordSelector<T>. If no such form appears to be in the system, the basic list form of
documents will open. If more than one of such form appears to be in the system, the system throws an
error. It allows avoiding unobvious behaviour of the system in case of error in the system setting by the
administrator. The process of creation of own documents list form is detailed in the chapter List forms of
documents.

LEF The class of BaseFlatDocumentListForm form implements the following methods and has the

following properties:

e DocumentType, type of type returns a document type;

e SelectedID, type of long returns ID of the document selected in DocumentGridViewPanel control
element;

e SelectedList, type of IDList returns a list of IDs of the document selected in DocumentGridViewPanel
control element;

e LoadRecords() loads the documents into DocumentGridViewPanel control element;

e GridPanel, type of DocumentGridViewPanel returns DocumentGridViewPanel control element. Using
this property, a value can be set for instance for DocumentGridViewPanel properties, while
customizing the interface of this control element.

BaseDocumentEditForm

The form BaseDocumentEditForm (from namespace Ultima.Client.Documents) is derived from
BaseEditForm and is common parent for all edit forms of documents:
LEF CommonForm
=- EF BaseEditForm
=- E BaseDocumentEditForm

The form has implemented support for the commands on a document and list of document links to other
documents. The form contains also a toolbar with the functionality enumerated and derived from
BaseEditForm:

[# BaseDocumentEditForm EI@
L | ID: 123123 Date A Execute commands.. &5] - en & - &8 oK Save Cancel
@
Rommand contrals will be here. ECEE:, ment creator information is being loaded. .. ﬁiommenm:: =
]

To implement own edit form for a document, it should be derived from BaseDocumentEditForm form,
and IRecordEditor<T> interface should be implemented, where T is a document type. The system for
editing of the document will search for the form implementing /RecordEditor<T> interface. If no such
form appears to be in the system, the basic document edit form opens. If more than one of such form
appears to be in the system, the system throws an error. It allows avoiding unobvious behaviour of the
system in case of error in the system setting by the administrator. The process of creation of own
document edit form is detailed in the chapter Edit forms of documents.

The control element has the following specific properties (the properties derived from BaseEditForm
are described in the corresponding section):
e CommandsMenuVisible —if true, a button is displayed for the list of commands on a document (1);

© 2018 Ultimate 379

ULTRAATE

Developer SOLIn

e QuickCommandsVisibles —if true, a toolbar is displayed for quick access to the commands at the form
bottom (2).

ZF In the class of BaseDocumentEditForm form, DocumentManager is imported.

When you deriving from the form BaseDocumentEditForm the following methods and properties of its

class can be useful to the application developer:

e DocumentType, type of type returns a document type, edited by the current form;

e Document, type of IDocument — returns the document edited in form — the object DataRecord, given
to the type IDocument.

DictionaryHelper

In the class EF DictionaryHelper (from the namespace Ultima.Dictionaries) the methods of the following

operations for the dictionaries are realized:

e EditRecord(Type dictionaryType, long id) — opens the specified record of the dictionary in a modal form
of editing (the information on modal and non-modal forms of editing can be found on the website
MSDN =+ eng/rus):
= dictionaryType —dictionary type;
= jd —dictionary record id;

e EditRecord(long id) — opens the specified record of the dictionary of metadata in a modal form of
editing:
= jd —metadata object id (dictionary type is uniquely determined by the record code);

e BeginEditRecord(Type dictionaryType, long id) — opens the specified record of the dictionary in non-
modal form of editing:
= dictionaryType —dictionary type;
= jd —dictionary record id;

e BeginEditRecord(long id) —opens the specified record of the dictionary in non-modal form of editing:
= jd —dictionary record id (dictionary type is uniquely determined by the record code);

e ViewEditRecord(Type dictionaryType, long id) — opens the specified record of the dictionary in the
reading mode of a modal form of editing:
= dictionaryType —dictionary type;
= jd —dictionary record id;

e BeginViewRecord(Type dictionaryType, long id) — opens the specified record of the dictionary in the
reading mode of non- modal form of editing:
= dictionaryType —dictionary type;
= jd —dictionary record id;

e InsertRecord(Type dictionaryType, IDictionary<string, object> parameters = null) — opens a modal form
of editing for creation of new a record of the dictionary:
= dictionaryType —dictionary type;
= parameters —parameters of a new record of the dictionary (optionally);

e BegininsertRecord(Type dictionaryType, IDictionary<string, object> parameters = null) — opens non-
modal form of editing for creation of new a record of the dictionary:
= dictionaryType —dictionary type;
= parameters —parameters of a new record of the dictionary (optionally);

e BrowseRecords(Type dictionaryType, long? id = null) — opens non-modal list form of the specified
dictionary for viewing of its records:
= dictionaryType —dictionary type;
= jd —dictionary record id, which will be chosen in the list (optionally);

e SelectRecord(Type dictionaryType, long? id = null) —opens a modal list form of the specified dictionary
for choosing of its one record. Returns a code of the chosen record if it was chosen, otherwise null:
= dictionaryType —dictionary type;

© 2018 Ultimate 380

http://msdn.microsoft.com/en-us/library/aa984358.aspx
http://msdn.microsoft.com/ru-ru/library/39wcs2dh.aspx

ULTRAATE

Developer SOLIn

= jd —dictionary record id, which will be chosen in the list (optionally);

e SelectRecords(Type dictionaryType) — opens a modal list form of the specified dictionary for choosing
several records. Returns a list of codes of the chosen records if they were chosen, otherwise null:
= dictionaryType —dictionary type.

The typified options of all listed methods are also realized.

DocumentHelper

In the class & DocumentHelper (from namespace Ultima.Documents) methods of the following
operations on documents are implemented:
e EditDocument(long id) opens the specified document in modal edit form (information about modal
and modeless edit forms can be found on MSDN website =+ eng/rus):
= jd —document ID;
e BeginEditDocument(long id) opens the specified document in modeless edit form:
= jd —document ID;
e ViewDocument(long id) opens the specified document in the reading mode in the modal edit form:
* jd —document ID;
e BeginViewDocument(long id) opens the specified document in the reading mode in modeless edit
form:
= jd —document ID;
e InsertDocument(Type documentType, IDictionary<string, object> parameters = null) opens the modal
edit form for creation of new document:
= documentType —document type;
= parameters —parameters of new document (optional);
e BegininsertDocument(Type documentType, IDictionary<string, object> parameters = null) opens the
modeless edit form for creation of new document:
= documentType —document type;
= parameters —parameters of new document (optional);
e BrowseDocuments(Type documentType, long? id = null) — opens not model list form to view the
documents of specified type:
® documentType —document type;
= jd —1D of the document, which will be selected in the list (optional);
e GetTablePartControl(Type tablePartType) returns a control element for the table part of specified
type:
= tablePartType —table part type;
e SelectDocument(Type documentType, long? id = null) — opens model list form to select the document
of specified type. It returns ID of selected document, if it was selected, otherwise null:
® documentType —document type;
= jd —1D of the document, which is selected in the list (optional).

The options of the following methods are implemented too: InsertDocument<T>,
BeginlnsertDocument<T>, BrowseDocuments<T>, GetTablePartControl<T>and SelectDocument<T>.

© 2018 Ultimate 381

http://msdn.microsoft.com/en-us/library/aa984358.aspx
http://msdn.microsoft.com/ru-ru/library/39wcs2dh.aspx

ULTRAATE

Developer SOLIn

DictionaryLookupEdit

The DictionaryLookupEdit control element (from Ultima.Client.Controls namespace) performs functions
of the ComboBox standard control and the ComboBoxEdit control of the DevExpress package. Used to
select a flat dictionary's record:

© O © ©

FAFNb 30 v |---||Czech Koruna CZK (203) £

® OO

»

+

b

Identity |Name Mumber code | Alpha code
| Czech Koruna 203 cK
Swiss Franc 756 CHF
8 Hungarian Forint 343 HUF
10 US Dollar B340 usD l

Search: x Find
@ Filter: >

x

The control has the following properties:
e AllowClear —if true, the button that resets the selected value is displayed (7);

DictionaryType —dictionary that the control will work with;
EditButtonEnabled —if true, the button to open the edit form of the selected record (5) is enabled, if it
is displayed in the control;
EditButtonVisible —if true, the button to open the edit form of the selected record is displayed (5);
FilterPanelVisible —if true, the filter panel is displayed (9);
IDEditAutoWidth — if true (default value), the field width (1) IDEditWidth is considered minimal (incl.
buttons (2) and (3)). At the same time, if the ID being entered does not fit into the field (1), the field
width automatically increases according to length of the number being entered;
IDEditVisible — if true, the record code field (1) is displayed. If false, buttons (2) and (3) move to the
right, beyond field (4):

. P g
IDEditWidth —total width of the block including field (1) and buttons (2) and (3);
LookupButtonVisible —if true, the button to open the control's list is displayed (2);
NewButtonVisible —if true, the button to open the new record creation form is displayed (6);
SelectButtonEnabled — if true, the button to open the dictionary list form for selecting a record is
enabled (3), if itis displayed in the control;
SelectButtonVisible — if true, the button to open the dictionary list form for selecting a record is
displayed (3);
ShowColumnHeaders — if true, column headers in the dictionary records list in the control are
displayed;
Filter — predicate expression used to filter the list of the available records displayed in the drop-down
list or the dictionary list form opened with the select button (3).

The functionality and interface of DictionaryLookupEdit affected by the following dictionary properties:

Is small — by default, for small dictionaries with the Is small flag set -] < [x
the search function is not available. At the same time, the | mentiy name Number code |Alpha code | &
collection of all dictionary records gets into the control when 30 CzechKoruna - 203 caK 1
32 Swiss Franc 736 CHF
opened; & Hungarian Forint 348 HUF -

© 2018 Ultimate 382

ULTRAATE

Developer SOLIn

By default, records from large dictionaries do not get into the -] 2[x
control when first opened; To display them, use the search ||uessage
function to Shorten the IISt fUse the panel below to search for records.

Search: X Find

3

e Display format — defines a format for displaying the selected record in the control's field (4). For the
currencies dictionary given in the example, the value of this parameter is "{Name} {AlphaCode}
({NumCode})". If the Display format was not specified, the format will be formulated from the values
of all properties of the dictionary, except those of LargeText and byte[] types;

e Search property —defines the property that the search in the dictionary will be performed by. For the
currencies dictionary given in the example, the value of this parameter is "Name". The filtering is
performed by the same parameter;

e Lookup —dictionary properties attribute —defines that the dictionary properties will be displayed in a
drop-down list of the control (the dictionary record /D is always displayed). If neither of dictionary
properties is marked with this attribute, the list will include the properties specified in Display
format. If Display format is empty too, all properties will be displayed in the control list, except those
of LargeText and byte[] types;

When creating a new dictionary record, click button (6) can, if needed, define the record's initial values,
having responded to InsertRecord event. It is possible either to insert parameters for the new record in
order that the control handles them singly:

private void MyLookupEdit_InsertRecord(object sender, InsertRecordEventArgs args)

{
}

or create the record and return its code to the control in order to use it:
private void MyLookupEdit_InsertRecord(object sender, InsertRecordEventArgs args)

{

args.Parameters["Name"] = "YourText";

args.Handled = true; // important!
args.InsertedRecordID =
DictionaryHelper.InsertRecord<DictionaryName>(args.Parameters);

}

The RecordCreated event informs that the record is successfully created.

When editing a dictionary record opened in the control element, one may make use of a similar method
by clicking button (5), having responded to EditSelectedRecord event.

DictionaryLookupTreeEdit

DictionaryLookupTreeEdit control element (from Ultima.Client.Controls namespace) performs the
functionality of ComboBox standard control element and ComboBoxEditcontrol element of DevExpress
package. Itis used to select the tree dictionary record:

EAp 12 - |-=-||12, CPU £

® ® |
v Intel

~ Intel Core i3-4330, OEM
Intel Core i3-4330, BOX
Intel Core i7-4320K
Intel Core i5-4460, OEM -

x

1 >

© 2018 Ultimate 383

ULTRAATE

Developer SOLIn

The control element has the following specific properties:

e AllowClear —if true, a button is displayed resetting the values selected in the control element (6);

e DictionaryType —a dictionary, which data the control element will work with;

e DisplayColumn —a name of dictionary property, which is displayed in the control element list tree (the
default value is Name);

e EditButtonVisible —if true, a button is displayed to open the edit form for selected record (5);

e /dColumn —a name of the dictionary property being ID (the default value is /d);

o |DEditAutoWidth —if true, the field (default) width (1) IDEditWidth is interpreted as minimum width of
the field (including buttons (2) and (3)). Moreover, if entered ID is not placed in the field (1), the field
width is increased automatically in proportion to the sizes of entered number;

o |DEditVisible —if truea record code field is displayed(1). If false buttons (2) and (3) displace to the right
after the field (4):

Y

e |DEditWidth —overall width of the block, which includes the field (1) and buttons (2), (3);

e LookupButtonVisible — if true, a button is displayed, by which a list of the control element will pop
up(2);

e ParentColumn —a name of the dictionary property Parent property, according to which a tree is built
(the default value is ParentID);

e SelectButtonVisible —if true, a button is displayed for opening of the dictionary list form for selection
of the record (3).

The following property of the dictionaries influences the functionality and interface of

DictionaryLookupTreeEdit:

e Display format defines the format, in which the selected record will be displayed in the field (4) of the
control element. The value of this parameter for the dictionary of the group of goods given in the
example will be "{ID}, {Name}". If the value Display format is not set, the format will be formulated
from the values of all properties of the dictionary, except for the properties of type LargeText and
byte[].

DictionaryMultiSelectEdit

DictionaryMultiSelectEdit control element (from Ultima.Client.Controls namespace) performs the
functionality of CheckedComboBoxEdit control element of DevExpress package. It is used to select
several records of flat and tree dictionary (the records are also provided as a list):

- |x = |-=-||3 records

@ Identity MName
v

4376 LG GT-9730A (TenedoH c KK +Tpybka c 4.,

1
X

11 3

W 13604 LG TCC 6220 Kac/paawo,CbeMH. MaHEeNE 4. ..
[4034 LG GS-475 (white)
6768 LG 24/10/40 GCE-82408 IDE
Search: LG x Find

x

The control element has the following specific properties:

e DictionaryType —a dictionary, which data the control element will work with;

e AllowClear —if true a button is displayed, resetting the values selected in the control element (5);

o |DEditAutoWidth —if true, the field (default) width (1) IDEditWidth is interpreted as minimum width of
the field (including buttons (2) and (3)). Moreover, if entered ID is not placed in the field (1), the field
width is increased automatically in proportion to the sizes of entered number;

© 2018 Ultimate 384

ULTRAATE

Developer SOLIn

o |DEditVisible —if truea record code field is displayed(1). If false buttons (2) and (3) displace to the right
after the field (4):

o |DEditWidth —overall width of the block, which includes the field (1) and buttons (2), (3);

e LookupButtonVisible — if true, a button is displayed, by which a list of the control element will pop
up(2);

e SelectButtonVisible —if true, a button is displayed for opening of the dictionary list form for selection
of the record (3).

The following properties of the dictionaries influence on the functionality and interface of
DictionaryMultiSelectEdit:

e /s small—for small dictionaries, with set Is small flag, the search - |- -|x
functionality is unavailable. But at the same time, selection of | Identity |Name Number code | Alpha code | &
all dictionary records falls into the control elements when ... ~ 3 CwthKouna 203 oK e

32 Swiss Franc 756 CHF
opened; 8 Hungarian Forint 348 HUF -
=

e The records of large dictionaries do not fall into the control - |- -[x
element when opened for the first time. A search limiting the | message
selection should be used for their display; Use the panel belon to search for records,

Search: X Find

b4

e Display format defines the format, in which the selected record will be displayed in the field (4) of the
control element. The value of this parameter for the dictionary of goods given in the example will be
"{1D}, {Name}".If the value Display format is not set, the format will be formulated from the values
of all properties of the dictionary, except for the properties of type LargeText and byte[]:

- |-==||1record: 6768, LG 24/10/40 GCE-8240B IDE - X

e Search property defines by which dictionary property the search will be carried out. The value of this
parameter for the dictionary of goods given in the example will be "Name";

e Lookup —attribute of dictionary properties defines that the dictionary properties will be displayed in
dropdown list of the control element (dictionary record /D is displayed always). If neither of dictionary
properties is marked with this attribute, the list will include the properties specified in Display
format. If Display format is empty too —all properties will be displayed in the control element list,
except for the properties of type LargeText and byte[];

DocumentEllipseEdit

The DocumentEllipseEdit control (from the Ultima.Client.Controls namespace) mimics the functionality of
the ComboBox standard control and the ComboBoxEdit control of the DevExpress package. It is used to
select a document of the given type using the document list form:

A ® S

o+ | XK

The control has the following own properties:
e DocumentType —document type to be selected using this control.

The control has the following properties inherited from its parent class, DictionaryLookupEdit:
e AllowClear —if true, the button that resets the selected value is displayed (6);
e DictionaryType —the value is always set to typeof(Ultima.Document);

© 2018 Ultimate 385

ULTRAATE

Developer SOLIn

e EditButtonEnabled —if true, the button to open the edit form of the selected record (4) is enabled, if it
is displayed in the control;

e EditButtonVisible —if true, the button to open the edit form of the selected record is displayed (4);

e |DEditAutoWidth — if true (default value), the field width (1) /IDEditWidth is considered minimal (incl.
button (2)). At the same time, if the ID being entered does not fit into the field (1), the field width
automatically increases according to length of the number being entered,;

e |DEditVisible — if true, the record code field (1) is displayed. If false, button (2) moves to the right,
beyond field (3):

EOIFAE N4

¢ |DEditWidth —total width of the block including field (1) and button (2);

e LookupButtonVisible —always false, as the drop-down document list is not supported;

o NewButtonVisible —if true, the button to open the new document creation form is displayed (5);

e SelectButtonEnabled — if true, the button to open the document list form for selecting a document is
enabled (2), if it is displayed in the control;

e SelectButtonVisible — if true, the button to open the document list form for selecting a document is
displayed (2);

e Filter —predicate expression used to filter the list of the available records displayed in the drop-down
list or the dictionary list form opened with the select button (3). Filter expression can use either the
Document type or the concrete type of the document specified in the DocumentType property, i.e.:

private void InitAgentFilter(long agentId)

{

SaleDocumentBox.Filter = GetFilter<SaleDocument>(d => d.AgentID == agentld);
}
DictionaryGridPanel

DictionaryGridPanelcontrol element (from Ultima.Client.Controls namespace) is used to display and edit

the content of flat and tree dictionary (the records are also provided in the form of a list). It consists of:

e toolbar (1);

e table of dictionary records (2) — GridControl control element of DevExpress package. Editing of records
is carried out directly in the table:

o o

® a2
@ Identity |Mame Mumber code Alpha code -
b > | Czech Koruna 203 fori's £
32 Swiss Franc 756 CHF
8 Hungarian Forint 348 HUF

© 2018 Ultimate 386

ULTRAATE

Developer SOLIn

The control element has the following specific properties:

e DictionaryType —a dictionary, which data the control element works with;

e AutoPopulateGridColumns — if true, the table columns (GridControl) (2) are created automatically for
all properties of the dictionary bound to the element. In the value false, the columns are used being
created by the application developer;

e CanDragToolbar —if true, it allows changing the position of the toolbar (1);

e DeleteButtonEnabled — if true, a button for deletion of dictionary records (4), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;

e DeleteButtonVisible —if true, a button for deletion of dictionary record is displayed (4);

e NamefFilterMode sets the mode for performance of search using the field (5):
= if filter, (by default) all dictionary records are filtered by entry of searched text;
= if search, a search is carried out only among the records displayed in the table (GridControl), no

database access is carried out at that. As a result of search, only the records will remain in the table,
which meet the condition. Moreover, the entries of searched fragment will be highlighted in them:

Q o |sw Q 2 |do Q
Identity |Mame Identity |Name Identity |Mame
» - | Czech Koruna b - | Swiss Franc » -~ Us Dellar
32 Swiss Franc -] 31 Swedish Krona - NameFilterMode Search - 1 Australian Dollar
8 Hungarian Forint 14 Canadian Dollar
10 US Dallar 19 Moldovan Leu
26 Turkish Lira 24 singapore Dollar

28 Uzbekistan Sum

o NamefFilterVisible — if true, a search field is displayed (5). The search is carried out by the field of the
dictionary, defined with its Search property;

e NamefFilterWidth —width of the search field in pixels (5);

e NewButtonEnabled — if true, a button for creation of new dictionary record (3), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;

e NewButtonVisible —if true, a button for creation of new dictionary record is displayed (3);

e ReloadButtonVisible —if true, a button to reload dictionary record is displayed (6);

e SaveButtonEnabled — if true, a button for saving of changes made to the dictionary record (7), if
displayed in the toolbar, it can be clicked;

e SaveButtonVisible — if true, a button for saving of changes made to the dictionary record is displayed
(7);

e ToolbarVisible —if true, atoolbar is displayed (1).

While using the control element, in addition to indication of DictionaryType, the dictionary of the same
type should be bound in its properties to GridControl control element, which is its part.

&} The class of DictionaryGridPanel control element implements the following methods and has the

following properties:

e DictionaryType, type type returns a dictionary type;

e LoadRecords() loads the dictionary record into GridControl control element;

e SaveRecords() saves edited dictionary records;

e SaveAndReload() saves edited dictionary records and reloads the list of dictionaries;

o ApplyCustomfFilter — an event, which is executed after loading of records (LoadRecords). It supports
strictly typed filters and can be executed in asynchronous manner.

© 2018 Ultimate 387

ULTRAATE

Developer SOLIn

DictionaryGridViewPanel

Control element DictionaryGridViewPanel (from namespace Ultima.Client.Controls) control element is
used to display content of flat dictionary. It consists of:

toolbar (1);
table of dictionary records (2) — GridControl control element of DevExpress package:

VP @ ® ® % ® ®

@ Q| | Execute commands..~ ¥ | & - | B Max. rows: | 10000 S | £ | =» Filters|
@ Identity MName Mumber code Alpha code
3 E 203 CZK
. F
32 Swiss Franc 756 CHF Identity =
8 Hungarian Forint 348 HUF hd
10 US Dollar 340 usD

Reset filters Apply

The control element has the following specific properties:

DictionaryType —a dictionary, which data the control element works with;

o AllowEmptyfFilter —if true, it allows applying unfilled filter to dictionary records (17), which will return

all dictionary records. Iffalse unfilled filter will return null;

o AutoBestFitAfterColumnSelection — if true after selection of columns displayed in the table

(GridControl), an optimum width will be selected for them;
CanDragToolbar—if true, it allows changing the position of the toolbar (1);

CheckColumnVisible —if true, a column is displayed to select the dictionary records:
Identity |MName Mumber Identity | Name MNumber code
30 CzechKoruna 203 == CheckColumnVisible False - 30 CzechKoruna 203
32 Swiss Franc 758 32 Swiss Franc 758

CloneButtonEnabled — if true, a button to clone dictionary records (5), if displayed in the toolbar, it can
be clicked. The property is set automatically depending on the permissions of the user that opens the
dictionary form;

CloneButtonVisible —if true, a button to clone dictionary record is displayed (5);
CommandsMenuVisible — if true, a button is displayed for the list of commands on dictionary records
(9). The button is visible only if there are commands on dictionary records for that type;
DeleteButtonEnabled — if true, a button for deletion of dictionary records (4), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;

DeleteButtonVisible — if true, a button for deletion of dictionary record is displayed (4);
EditButtonEnabled —if true, a button to edit dictionary records (6), if displayed in the toolbar, it can be
clicked. The property is set automatically depending on the permissions of the user that opens the
dictionary form;

EditButtonVisible —if true, a button to edit dictionary record is displayed (6);

FilterButtonVisible — if true, a button to open/hide the filter panel is displayed (16);

FilterPanelVisible —if true, a filter panel is displayed (17);

FilterPanelWidth —filter panel width in pixels (17) by default;

FitColumnButtonVisible — if true, a button for automatic selection of optimum width of the table
column is displayed (GridControl) (13);

© 2018 Ultimate 388

ULTRAATE

Developer SOLIn

GroupButtonVisible —if true, a button to open/hide the grouping panel is displayed (12);
GroupPanelVisible —if true, a grouping panel is displayed under the toolbar (1):

F & Q| | Execute commands..~ ¥ | & - | 5 Max, rows: | 10000 S| £ < Filters

m

Drag a column header here to group by that column

Identity MName Mumber code Alpha code
30 Czech Koruna 203 CZK
32 Swiss Franc 756 CHF
8 Hungarian Farint 348 HUF

IDEditVisible —if true, a field is displayed for quick opening of the record according to the code (7):

LimitCounterValue — the default value of the counter (14), limiting the number of dictionary records

displayed in the form;

LimitCounterVisible —if true, a counter is displayed (14), which limits the number of dictionary records

displayed in the form;

LimitCounterWidth —width of counter value inputin pixels (14);

NamefFilterMode sets the mode for performance of search using the field (8):

= if filter, (by default) all dictionary records are filtered by entry of searched text;

= if search, a search is carried out only among the records displayed in the table (GridControl), no
database access is carried out at that. As a result of search, only the records will remain in the table,
which meet the condition. Moreover, the entries of searched fragment will be highlighted in them:

F & Q 2 0 & [=w Q 2 1 & |do Q,

Identity |Mame Identity |Mame Identity |Mame

» 30 Czech Koruna 32 Swiss Franc 10 US Dallar
......... 32 Swiss Franc - 31 Swedish Krona -] MameFilterMode Search - 1 Australian Dollar
8 Hungarian Forint 14 Canadian Dollar
10 US Dollar 19 Moldovan Leu
26 Turkish Lira 24 Singapore Dollar

28 Uzbekistan Sum
NamefFilterVisible — if true, a search field is displayed (8). The search is carried out by the field of the
dictionary, defined with its Search property;
NamefFilterWidth —width of the search field in pixels (8);
NewButtonEnabled — if true, a button for creation of new dictionary record (3), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;
NewButtonVisible —if true, a button for creation of new dictionary record is displayed (3);
PrintButtonVisible —if true, a print button is displayed (10);
QuickCommandsVisible —if true, a panel with commands on dictionary records, added to quick access,
is displayed at the bottom of control element. The panel is visible only if the commands were added
toit;
ReloadButtonVisible —if true, a button to reload dictionary record is displayed (15);
SaveSelectedColumns — if true, the selection of buttons, performed by the user using corresponding
tool (11), will be remembered;
SelectColumnsButtonEnabled — if true, a button for selection of columns (11), if displayed in the
toolbar, it can be clicked.
SelectColumnsButtonVisible —if true, a button is displayed for selection of columns visible in the table
— properties of dictionary records (11);
ToolbarVisible —if true, a toolbar is displayed (1).

While using the control element, in addition to indication of DictionaryType, the dictionary of the same
type should be bound in its properties to GridControl control element, which is its part (the process is
detailed in the chapter List forms of dictionaries).

© 2018 Ultimate 389

ULTRAATE

Developer SOLIn

ZF The class of DictionaryGridViewPanel control element implements the following methods and has

the following properties:

e DictionaryType, type type returns a dictionary type;

e CheckedRecords, type long[] returns an array of IDs of dictionary records selected in the control
element;

e LoadRecords() loads the dictionary record into GridControl control element;

e ApplyCustomfFilter — an event, which is executed after loading of records (LoadRecords). It supports
strictly typed filters and can be executed in asynchronous manner.

DictionaryTreeViewPanel

The DictionaryTreeViewPanel control element (from Ultima.Client.Controls namespace) is used to display
content of tree dictionary. It consists of:

e toolbar (1);

e table of dictionary records (2) — Treelist control element of DevExpress package:

L0 o © ©e% |
@ Ide'-"ﬁt" Hame @ Add or remove fiters,., #]

v (Al
7 Benchmark = Identity
v 1 Clients 1
3 Web dients
w 2 Suppliers

Q| | Bxecute commands...~ 8y | & - |

»

4 | m

Reset filters Apply

5 Foreign suppliers -

The control element has the following specific properties:

e DictionaryType —a dictionary containing data that the control element works with;

o AllowEmptyfFilter —if true, allows applying unfilled filter to dictionary records (15), which will return all
dictionary records. if false, unfilled filter will return null;

o AutoBestFitAfterColumnSelection —if true after selection of columns displayed in the tree (Treelist), an
optimum width will be selected for them;

e CanDragToolbar —if true, it allows changing the position of the toolbar (1);

e CheckColumnVisible —if true, a column is displayed to select the dictionary records:

Identity Mame Identity Mame
v) v ()
7 Benchmark > 7 Benchmark
v 1 Clients == CheckColumnVisible False - v 1 Clients
3 Web dients 3 Web dients
v 2 Suppliers w 2 Suppliers
5 Foreign suppliers 5 Foreign suppliers

e CloneButtonEnabled —if true, a button to clone dictionary records (5), if displayed in the toolbar, it can
be clicked. The property is set automatically depending on the permissions of the user that opens the
dictionary form;

e CloneButtonVisible —if true, a button to clone dictionary record is displayed (5);

e CommandsMenuVisible — if true, a button is displayed for the list of commands on dictionary records
(9). The button is visible only if there are commands on dictionary records for that type;

e CommonRootNodeVisible — if true , the level, which is parent for all dictionary records, is displayed
(All) in the tree (Treelist);

e DeleteButtonEnabled — if true, a button for deletion of dictionary records (4), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;

e DeleteButtonVisible —if true, a button for deletion of dictionary record is displayed (4);

© 2018 Ultimate 390

ULTRAATE

Developer SOLIn

e EditButtonEnabled —if true, a button to edit dictionary records (6), if displayed in the toolbar, it can be
clicked. The property is set automatically depending on the permissions of the user that opens the
dictionary form;

e EditButtonVisible —if true, a button to edit dictionary record is displayed (6);

e FilterButtonVisible —if true, a button to open/hide the filter panel is displayed (14);

e FilterPanelVisible —if true, a filter panel is displayed (15);

o FilterPanelWidth —filter panel width in pixels (15) by default;

o |DEditVisible —if true, a field is displayed for quick opening of the record according to the code (7):

e NamefFilterMode sets the mode for performance of search using the field (8):
= if filter, (by default) all dictionary records are filtered by entry of searched text;
= if search, a search is carried out only among the records displayed in the tree (Treelist), no database

access is carried out at that. As a result of search, all previously displayed records will remain in the
table, but at the same time, the entries of searched fragment will be highlighted:

2 7 & Q @ F # |Ci Q 2 [F & |Sup Q
Identity Name Identity Name Identity Name
b v Clients v~ O (A
> 7 Benchmark > 7 Benchmark
- - MameFilterMode Search ==

1 Clients > > > > 1 Clients
2 Suppliers v 2 Suppliers
5 Fareign suppliers 5 Foreign suppliers
4 Local suppliers 4 Local suppliers

o NamefFilterVisible — if true, a search field is displayed (8). The search is carried out by the field of the
dictionary, defined with its Search property;

e NamefFilterWidth —width of the search field in pixels (8);

e NewButtonEnabled — if true, a button for creation of new dictionary record (3), if displayed in the
toolbar, it can be clicked. The property is set automatically depending on the permissions of the user
that opens the dictionary form;

e NewButtonVisible —if true, a button for creation of new dictionary record is displayed (3);

e PrintButtonVisible —if true, a print button is displayed (10);

e QuickCommandsVisible —if true, a panel with commands on dictionary records, added to quick access,
is displayed at the bottom of control element. The panel is visible only if the commands were added
toit;

e ReloadButtonVisible —if true, a button for reload of dictionary record is displayed (13);

e SaveSelectedColumns — if true, the selection of buttons, performed by the user using corresponding
tool (11), will be remembered;

e SelectColumnsButtonEnabled — if true, a button for selection of columns (11), if displayed in the
toolbar, it can be clicked.

e SelectColumnsButtonVisible —if true, a button is displayed for selection of columns visible in the table
— properties of dictionary records (11);

e SubfoldersButtonChecked —if true, the subfolder button (12) is clicked;

e SubfoldersButtonVisible —if true, a subfolder button is displayed (12);

e ToolbarVisible —if true, atoolbar is displayed (1).

While using the control element, in addition to indication of DictionaryType in its properties, the
dictionary of the same type should be bound to TreeList control element, which is its part.

ZF The class of DictionaryTreeViewPanel control element implements the following methods and has

the following properties:

e DictionaryType, type type returns a dictionary type;

e SelectedList, type IDList returns a list of IDs of dictionary records selected in the control element;

e GetIDList(IEnumerable<TreelistNode> nodes) returns a list of IDs of dictionary records for specified
nodes of the tree;

e LoadRecords() loads the dictionary record into TreeList control element;

© 2018 Ultimate 391

ULTRAATE

Developer SOLIn

o ApplyCustomfFilter — an event, which is executed after loading of records (LoadRecords). It supports
strictly typed filters and can be executed in asynchronous manner.

DictionaryCheckList

Control element DictionaryChekList (from namespace Ultima.Client.Controls) is used
to select the dictionary records.

The control element has the following specific properties:

. . « . . . Czech Ko S
e DictionaryType —a dictionary, which data the control element works with; i 3
e PropertyName — a name of dictionary property, which values will be displayed in E;”E?E'H”BHFD”M [
ollar
the control element; Turkish Lira

Uzbekistan Sum

Rand

Yen

Australian Dollar
Azerbaijanian Manat -

e SaveCheckedRecords —if true, the marked dictionary records are saved in user settings of the form and
are selected automatically when re-opened.

ZF The class of control element implements the following methods and has the following properties:

e CheckedRecords, type IDList returns a list of IDs of dictionary records, marked with flags in the control
element, or sets flags for the list of assigned IDs;

e CheckAll() checks all dictionary records, loaded into control element;

e CheckNone() unchecks all dictionary records in the control element;

e CheckedRecordsChanged —event fired when selection of records is changed.

DocumentGridViewPanel

The DocumentGridViewPanel control element (from Ultima.Client.Controls namespace) is used to display
content of the logs of documents. It consists of:

e toolbar (1);

e tables containing documents (2) — GridControl control element of DevExpress package:

@ @ & |01.06-05.07, Ssubtypes |~ | Execute commands..r ¥ | & + | ¢ % Max. rows: | 10000 2| = # Filters| @

@ Identity |Deleted |Document subtype... |Supplier.Name Store.Mame | Income date | Transaction date Add or remove filters. .. e{

3 CrderPlaced Alf Comp Moscow 2013.07.05 2013.07.05 12:54:44

Creator identity
> |ane - | %

4 (mp

Reset filters Apply

The control element has the following specific properties:

e DocumentType —a type of document, which the control element works with;

e AutoBestFitAfterColumnSelection — if true after selection of columns displayed in the table
(GridControl), an optimum width will be selected for them;

e CanDragToolbar —if true, it allows changing the position of the toolbar (1);

e CheckColumnVisible —if true, a column is displayed to select the documents:

Identity |Deleted |Document subtyp Identity |Deleted |Document subtyp
] OrderPlaced == CheckColumnVisible False - OrderPlaced

e CommandsMenuVisible —if true, a button is displayed for the list of commands on documents (6). The
button is visible only if there are commands on documents for that type;

© 2018 Ultimate 392

ULTRAATE

Developer SOLIn

e DeleteButtonEnabled — if true, a button for deletion of a document (4), if displayed in the toolbar, it
can be clicked. The property is set automatically depending on the permissions of the user that opens
a log of documents;

e DeleteButtonVisible —if true, a button to delete a document is displayed (4);

e EditButtonEnabled — if true, a button to edit a document (5), if displayed in the toolbar, it can be
clicked. The property is set automatically depending on the permissions of the user that opens a log of
documents;

e EditButtonVisible —if true, a button to edit a document is displayed (5);

e FilterButtonVisible —if true, a button for opening/hiding of the filter panel is displayed (13);

e FilterPanelVisible —if true, a filter panel is displayed (13);

e FilterPanelWidth —filter panel width in pixels (13) by default;

e FitColumnButtonVisible — if true, a button for automatic selection of optimum width of the table
column is displayed (GridControl) (10);

e GroupButtonVisible —if true, a button to open/hide the grouping panel is displayed (9);

e GroupPanelVisible —if true, a grouping panel is displayed under the toolbar (1):

|05.07-05.07, 5subtypes |~ | | Execute commands..~ g | & - 5 % Max. rows: | 10000 5| & <4 Filters @

»

Drag a column header here to group by that column

Identity
¥ 8 Validation Alf Comp Moscow 2013.07.05 2013.07.05 12:54:44
. ?8925 PutToStock Alf Comp Moscow 2013.07.05 2013.07.05 17:34:33
78931 PutToStock LEGAL #6432049 STORE #2 2013.07.05 2013.07.05 17:48:21

Deleted Document subtype.System name Supplier. Name Store.Mame Income date Transaction date

e LimitCounterValue — the default value of the counter (11), limiting the number of documents
displayed in the form;

e LimitCounterVisible — if true, a counter is displayed (11), which limits the number of documents
displayed in the form;

e [imitCounterWidth —width of counter value input in pixels (11);

e NewButtonEnabled —if true, a button to create a new document (3), if displayed in the toolbar, it can
be clicked. The property is set automatically depending on the permissions of the user that opens a
log of documents;

e NewButtonVisible —if true, a button to create a new document is displayed (3);

e PrintButtonVisible —if true, a print button is displayed (7);

e QuickCommandsVisible — if true, a panel with commands on documents, added to quick access, is
displayed at the bottom of control element. The panel is visible only if the commands were added to
it;

e ReloadButtonVisible —if true, a button for reload of documents is displayed (12);

e SaveSelectedColumns — if true, the selection of buttons, performed by the user using corresponding
tool (8), will be remembered;

e SelectColumnsButtonEnabled —if true, a button for columns selection (8), if displayed in the toolbar, it
can be clicked.

e SelectColumnsButtonVisible —if true, a button is displayed for selection of columns visible in the table
— properties of a document (8);

e ToolbarVisible —if true, atoolbar is displayed (1).

While using the control element, in addition to indication of document type DictionaryType , the
document of the same type should be bound in its properties to GridControl control element, which is
its part.

ZF The class of DocumentGridViewPanel control element implements the following methods and has
the following properties:

e DocumentType, type of type returns a document type;

e CheckedRecordsCount, type of int returns a number of documents selected in the control element;

e CheckedRecords, type of long/[] returns an array of IDs of documents selected in the control element;

© 2018 Ultimate 393

ULTRAATE

Developer SOLIn

e LoadRecords() loads the dictionary record into GridControl control element;
e ApplyCustomeFilter — an event, which is executed after loading of records (LoadRecords). It supports
strictly typed filters and can be executed in asynchronous manner.

LinkTableGridPanel

LinkTableGridPanel control element (from Ultima.Client.Controls namespace) is used to display and edit

the content of link tables in the edit form of dictionary records. It consists of:

e toolbar (1);

e table of link table records (2) — GridControl control element of DevExpress package. Editing of records
can be carried out directly in the table:

%0

Artide group identity Online group identity
¥ | 99945, Components -HDD - 4,HDD

@

The control element has the following specific properties:

e LinkTableType —a link table, which data the control element works with;

e LinkTableEditableReference — a name of the dictionary, which the link table refers to in the format
Name of the dictionary. If the name is set, upon click on the button (4) a form opens for editing of
specified dictionary to create a new record. After creation, this record is added to the link table;

e AutoPopulateGridColumns — in the value true, the table columns (GridControl) (2) are created
automatically for all properties of the link table bound to the control element. In the value false, the
columns are used being created by the application developer;

e CanDragToolbar—if true, it allows changing the position of the toolbar (1);

e DeleteButtonEnabled — if true, a button to delete link table records (5), if displayed in the toolbar, it
can be clicked. The property is set automatically depending on the permissions of the user that opens
the dictionary record edit form;

e DeleteButtonVisible —if true, a button to delete link table record is displayed (5);

e EditButtonEnabled —if true, a button to edit link table records (6), if displayed in the toolbar, it can be
clicked. The property is set automatically depending on the permissions of the user that opens the
dictionary record edit form;

e EditButtonVisible —if true, a button to edit link table record is displayed (6);

e GroupButtonVisible —if true, a button to open/hide the grouping panel is displayed (7);

e GroupPanelVisible —if true, a grouping panel is displayed under the toolbar (1):

I e 7|

&

Drag a column header here to group by that column

Artide group identity Online group identity
k| 99945, Components - HDD * | 4, HDD

e NewButtonEnabled —if true, a button to create a new link table record (4), if displayed in the toolbar,
it can be clicked. The property is set automatically depending on the permissions of the user that
opens the dictionary record edit form;

e NewButtonVisible —if true, a button to create a new link table record is displayed (4);

e NewlnlineButtonEnabled — if true, a button to create new empty row in the table (GridControl) of the
control element (3), if displayed in the toolbar, it can be clicked. The property is set automatically
depending on the permissions of the user that opens the dictionary record edit form;

© 2018 Ultimate 394

ULTRAATE

Developer SOLIn

NewlnlineButtonVisible — if true, a button is displayed to create new empty row in the table
(GridControl) of the control element (3);
ToolbarVisible —if true, a toolbar is displayed (1).

While using the control element, in addition to indication of LinkTableType in its properties, the link
table of the same type should be bound to GridControl control element, which is its part. Moreover, it
should be executed through the data source of dictionary edit form, in which a link table should be
selected by the name of the second dictionary, which it refers to:

© @ &
= 4] 5
@ GridControl Tasks
Data Source Wizard
Choose Data Source (LG5 (=]
o= (Click here to change view) Ru = Naone o
. S @ bindingSource
(Click here to create a new level) 3 B ArticleGroups
[¥IT - g¥ Other Data Seurc
Retrieve Details Run Designer Ad
g Vig
Ap
]
.

8 Add Project Data Source...

& Selecting a related list creates a new related
Leq BindingSource and binds to this BindingSo...

UnoocE T FarernT Co e

BaseTablePartGridPanel

The BaseTablePartGridPanel control element (from Ultima.Client.Controls namespace) is used to display
and edit the content of table parts in the document edit form. It consists of:

toolbar (1);
table of table part records (2) — GridControl control element of DevExpress package. Editing of records
can be carried out directly in the table:

62620
@ 2 00 &0

@ Artide identity Quantity | Amount -
b 192601, CPU Intel Xeon w3570 8 21,632.00 =
192630, ZTb Western Digital Elements Desktop, WDBAAUOD20HE. .. 80 214,083.20

The control element has the following specific properties:

TablePartType —table part containing data that the control element works with;

e AutoPopulateGridColumns — if true, the table columns (GridControl) (2) are created automatically for

all properties of the table part bound to the control element. If false, the columns created by the
application developer are used;

CanDragToolbar —if true, it allows changing the position of the toolbar (1);

DeleteButtonEnabled — if true, the button to delete table part records (5), if displayed in the toolbar,
can be clicked. The property is set automatically depending on the permissions of the user that opens
the document edit form;

DeleteButtonVisible — if true, the button to delete table part records is displayed (5);
EditButtonEnabled —if true, the button to edit table part records (6), if displayed in the toolbar, can be
clicked. The property is set automatically depending on the permissions of the user that opens the
document edit form;

EditButtonVisible —if true, the button to edit table part records is displayed (6);

© 2018 Ultimate 395

ULTRAATE

Developer SOLIn

e GroupButtonVisible —if true, the button to open/hide the grouping panel is displayed (7);
e GroupPanelVisible —if true, the grouping panel is displayed under the toolbar (1):

= Q &G

Drag a column header here to group by that column

Artide identity Quantity | Amount =
2 192601, CPU Intel Xeon w3570 8 21,632.00 =
192630, ZTb Western Digital Elements Desktop, WDBAALOOZ20HB. .. 80 214,063.20

NewButtonEnabled —if true, the button for creation of a new table part record (4), if displayed in the

toolbar, can be clicked. The property is set automatically depending on the permissions of the user

that opens the document edit form;

NewButtonVisible —if true, the button for creation of a new table part record is displayed (4);

NewlnlineButtonEnabled — if true, the button to create a new empty row in the table (GridControl) of

the control element (3), if displayed in the toolbar, can be clicked. The property is set automatically

depending on the permissions of the user that opens the document edit form;

e NewilnlineButtonVisible — if true, the button is displayed to create a new empty row in the table
(GridControl) of the control element (3);

e ToolbarVisible —if true, atoolbar is displayed (1).

When using the control element, in addition to indication of TablePartType in its properties, the table
part of the same type should be bound to GridControl control element, which is its part. Moreover, it
should be executed through the data source of document edit form, in which a corresponding table part
should be selected:

=) e 7

b b GridControl Tasks
@ Data Source Wizard

- Choose Data Source [WBlE)

= (Click here to change viey £ - & None o
(Click here to create a new level) . @ bindingSource
S 3 ER Articles
Retrieve Details Run Designer ' ER Suppli icles
A FinControlArticles

. ¥ Other Data Sources

@ Add Project Data Source...

Selecting a related list creates a new related
BindingSource and hinds to this BindingSe...

=
m

Unoocerrarent coraTer

LT The class of BaseTablePartGridPanel control element has the following properties:
e TablePartType, type type returns a table part type;
e Selection, type IDList returns a list of IDs of table part rows selected in the control element.

The BaseTablePartGridPanel control element can be both placed directly on the document edit form and
own control element of the table part can be implemented on its basis. The second method is more
preferable when the functionality of basic document edit form is sufficient in general and an upgrade is
required only for the table part.

© 2018 Ultimate 396

ULTRAATE

Developer SOLIn

The most frequent reasonto create own control element of the [EaI RS
table part is implementation of any additional non-standard logic.
Therefore, only the toolbar will be located in own control element
derived from BaseFlatDictionarylListForm (1). The application
developer must locate the table (Grid) to display the table part
records independently (2), e.g., GridControl control element of
DevExpress package.

% #

To implement own control element of the table part, it should be derived from BaseTablePartGridPanel
control element and ITablePartEditor<T> interface should be implemented, where T is a type of the
table part. The system will search for the control element implementing ITablePartEditor<T>interface to
display the table part. If no such control element form appears to be in the system, the basic document
table part will open. If more than one of such control element appears to be in the system, the system
will throw an error. It allows avoiding non-obvious behaviour of the system in case of error in the
system setting by the administrator. The detailed information on creation of a dictionary's customized
list form provided in the chapter Table parts.

UltimaPanelControl

Control element UltimaPanelControl (from namespace Ultima.Client.Controls) [UtimaransiCentrol
executes the functionality of PanelControl and standard control element
GroupControl of DevExpress package. But as distinguished from them,
UltimaPanelControl changes its interface depending on the used topic and has
transparent background. It is used to unite the control elements into a group.

UltimaDateEdit

UltimaDateEdit control element executes the functionality of DateTimePicker standard control element
and DateEdit control element of DevExpress package. It is used for input of data and time:

01.01.2012 = ||00:00 - Flo1.2013 = | 00:00

Fridlk]uly 05, 2013
4 January, 2013]

Sun Mon Tue Wed Thu Fri Sat

2 3 4 5

g 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 2% 30 31

Clear

The control element has the following specific properties:
e DateTime —default value. If the property is not defined, the control element will open empty:

e TimeEditVisible — if true, a time block (on the right) will be displayed. It is used to handle with data
types date and DateTime;
e TimeEditWidth —time block width.

L The control element class has the following properties:
e DateTime, type DateTime returns time entered in the control element;
e EditValueChanged —an event fired in case of change of value in the control element.

© 2018 Ultimate 397

ULTRAATE

Developer SOLIn

UltimaFileEdit

Control element UltimaFileEdit (from namespace Ultima.Client.Controls) is used [wisTesis TP
to load and save files.

L The control element class has the following properties:

e FileName, type string returns a file name;

e FileData, type byte[] returns a file;

e CheckNone() unchecks all dictionary records in the control element.

e FileRead — an event fired when a file is read from the disk (at the point of confirmation of file
selection);

e FileNameChanged —an event fired when the file name is changed;

e FileDataChanged —an event fired when the file is changed.

UltimaTextEdit

Control element UltimaTextEdit (from namespace Ultima.Client.Controls) executes the functionality of
standard control elements TextBox and RichTextBox, as well as control element TextEdit of DevExpress
package. It is used for input of text:

The control element has the following specific properties:

e MaxStringSize — maximum size of the string (text), the counter functioning is based on this parameter
(1). The default value is 256;

e Multiline — if true, the input field is transformed from the row into a text block. In addition to
difference in interface, a symbol of row break is perceived in such control element;

e PropertylD — 1D of multilanguage property of the dictionary (marked with Multilanguage flag), which
data the control element will handle;

e ReadOnly —in value true the text input manually in the element of the control will be forbidden;

e ShowCounter —in value true the counter of quantity of symbols, available to input (1). In value false
restrictions input by parameter Max size dictionary properties, are not applied;

e ShowTranslationButton — in value true the button of input of multilingual values of dictionary
properties is displayed (2).

PostgreSQL-based version features

PostgreSQL version limitations

Compared to the Oracle-based version, there are following limitations:
e Predicates aren't supported.
¢ Values of the DateTime type are not automatically translated in accordance to the user's time zone.

e Application server call and session data (Clientinfo) is not displayed in the system views
(pg_stat_activity).

e Automatic Oracle session sweeper task is disabled.

© 2018 Ultimate 398

ULTRAATE

Developer SOLIn

e Multiple active DataReaders sharing a database connection (also called MARS — Multiple Active
Result Sets) is not allowed.

e Any database error invalidates the current transaction so that it refuses any further SQL commands
and cannot be committed.

The rest of the system is implemented on par with the Oracle-based version.

PostgreSQL development features

Here is a brief overview of the distinctive PostgreSQL features that affect us the most. It's by no means
comprehensive, but should be considered as an absolute minimum for the Oracle developer:

e Table names, column names and function names are lowercase (except for the double-quoted
identifiers). This affects the result set column names of the SQL queries.

e Packages are not supported. Ultimate AEGIS® kernel use schemas to group functions instead of
packages. That's why PostgreSQL version uses more kernel schemas.

e Session variables are used instead of the package variables. The semantic is close to package
variables, but not fully equivalent.

e Temporary tables in PostgreSQL are always local and cannot be bound to specific schemas, unlike
Oracle. Ultimate AEGIS® has a set of function providing the emulation layer for Oracle-style global
temporary tables that fully supports the familiar syntax of using these tables.

e Triggers don't have their own executable body. Every trigger wraps a call to a stored procedure.

e Deferrable and deferred check constraints aren't supported. They can be emulated using
deferrable/deferred triggers.

e Stored procedure syntax is PL/PgSQL which resembles but still is different from Oracle's PL/SQL in
many aspects.

e Stored procedures always use dynamic binding (i.e. symbols are bound to their semantic at runtime).
For example, when a stored procedure invokes a query such as "SELECT * FROM USERS", the name
"USERS" is searched for at runtime, not at compile-time. Dynamic binding feature makes PostgreSQL
very flexible, but also vulnerable to the runtime errors, as compared to Oracle.

e By default, PostgreSQL functions use the current database user's permissions (in Oracle, they use
function owner's permissions). This setting can be overridden per-function.

e Empty strings are not same as NULLs. Unlike Oracle, concatenating a PostgreSQL varchar or text value
with NULL always yields NULL. Always initialize the local variables with an empty string to avoid the
unintentional nullification of the result.

e DDL operations in PostgreSQL are transactional. Creating functions, altering column types, truncating
tables, etc — need to be committed.

e Replacing a function with a new version fails if the signature is different. In that case, "CREATE OR
REPLACE FUNCTION" is not enough: one needs to DROP the old version before creating a new one.

e Any database error invalidates the current transaction so that it refuses any further SQL commands
and cannot be committed. But the transaction can be rolled back to the last savepoint before the
error, if any. After rolling back to the savepoint, the transaction can be continued and committed (this
approach is used by the integration tests).

© 2018 Ultimate 399

ULTRAATE

Developer SOLIn

e Multiple active DataReaders sharing a database connection (also called MARS — Multiple Active
Result Sets) is not allowed. To read several data sets in parallel, we either open a separate connection
for each data set, or process them sequentially.

The database specifics cannot always be abstracted away in the application code. Many commands or
services need to invoke pure dynamic SQL statements, execute stored procedures, etc. Application
schema may define custom views, constraints and triggers, so Oracle application developer is forced to
learn at least basic PostgreSQL features. The following instructions may be helpful for dealing with a few
of the above features.

Working around the dynamic binding in PL/PgSQL code

Dynamic binding is a powerful feature that in some cases can help avoiding the dynamic execution of
statements (EXECUTE sql). But on the other hand, dynamic binding loosens the compile-time validity
checks. The compiler cannot check whether the given symbol represents an object statically. When a
function references a symbol such as table name or a function, the object it references to will be
determined at runtime. Also, the runtime search is affected by the built-in "search_path" session
variable, which means that the symbol can be bound to any object in any schema according to the user
preferences. Of course, this is often not what was intended.

To disable the dynamic binding, we use two rules:
e Add "set search_path to (current schema name)" clause to all functions and
e Qualify all tables and functions outside of the current schema with their schema names.

This doesn't make the bindings static (PostgreSQL still doesn't check the validity of the symbols), but
effectively disables the dynamic binding. Here is the example source code for the PL/PgSQL function not
affected by the dynamic binding:

-- current search_path = my_schema
create or replace function my_func(my_arg text) returns void as $$%

declare
v_id bigint
begin
perform another_func(my_arg -- same as perform my_schema.another_func(my_arg);
select id into v_id
from kernel.users -- table name is qualified with kernel schema name

where login my_arg

-- the rest is skipped...
end
$$ language plpgsql set search_path to my_schema

Overriding the default function permissions

By default, PostgreSQL functions use the current database user's permissions, like Oracle's "AUTHID
CURRENT_USER" option (Oracle default is "AUTHID DEFINER"). To emulate the Oracle behavior, a
function should override the security option as follows:

create or replace function my_secure_func returns void as $$%
begin
-- call here any functions available to the superuser
end
$$ language plpgsql security definer:. -- default is security invoker

© 2018 Ultimate 400

ULTRAATE

Developer SOLIn

Emulating the deferred check constraints

Consider a simple check constraint such as quantity >= reserve_quantity on ultima.vtb_stock table. The
immediate check constraint is supported out of the box, but the deferred version take a special kind of
trigger to emulate:

-- create the trigger function to check the specified condition
create or replace function ultima.vtb_stock_resqty_chk_trigger returns trigger as $$%
begin
if not new.quantity new.reserve_quantity then
raise exception 'Deferred constraint violation.
Table name: ultima.vtb stock
Constraint: vtb_stock_resqty_chk
Condition: quantity >= reserve_quantity
Data row: %', new
using errcode '23514"'; -- check constraint violation error code
end if

return new
end
$$ language plpgsql

-- create deferred constraint trigger instead of the check constraint
drop trigger if exists vtb_stock_resqty_chk_trigger on ultima.vtb_stock
create constraint trigger vtb_stock_resqty_chk_trigger

after insert or update on ultima.vtb_stock

deferrable initially deferred

for each row

execute procedure ultima.vtb_stock_resqty_chk_trigger

Emulating Oracle-style global temporary tables

PostgreSQL semantic of temporary tables is substantially different from that of Oracle. Here is a brief
summary:

e Oracle temporary tables are permanent, so their structure is static and visible to all users, and the
content is temporary.

e In PostgreSQL, temporary table is created before each use. Both the structure and the content of a
temp table is local for a database backend (a process) which created the table. PostgreSQL temporary
tables are dropped either at the end of a session or at the end of a transaction.

e Oracle temporary tables are always defined within a user-specified schema.

e PostgreSQL temporary tables cannot be defined within user's schema, they always use a special
(implicit) temporary schema instead.

Pack_temp schema contains the emulation library for the Oracle-style temporary tables. There are two
functions:

e create_permanent_temp_table(table_name [, schema_name]);

e drop_permanent_temp_table(table_name [, schema_name]);

Creating a permanent temporary table is done in two steps:

1. Create a normal PostgreSQL native temporary table (that will be deleted at the end of transaction).

2. Use create_permanent_temp_table function to convert the temporary table into permanent one:

create temporary table if not exists another_temp_table

© 2018 Ultimate 401

ULTRAATE

Developer SOLIn

first_name varchar
last_name varchar
date timestamp(®) with time zone
primary key(first_name, last_name

on commit drop

-- create my_schema.another_temp_table
select pack_temp.create_permanent_temp_table('another_temp_table', 'my_ schema’

-- or create another_temp table in the current schema
-- select create permanent temp table('another_ temp table');

-- don't forget to commit: PostgreSQL DDL is transactional
commit

The created object is a view that closely emulates the behavior of the Oracle-style global temporary
table. To drop it, use drop_permanent_temp_table function.

Multiple active DataReaders sharing a database connection

This is the most annoying restriction of PostgreSQL: each connection allows only one DataReader to be
opened at a time. New query cannot be executed until the last reader is closed. It seems to be the
limitation of the network protocol, so any database driver for PostgreSQL has this restriction in place.
The issue keeps popping up in the application services, LINQ queries and SQL queries in many different
forms. Here are but a few common cases:

1. LINQ-query references a constant (or a service call). The query opens the first DataReader, the service
tries to open the second and fails with an exception. To overcome the limitation, read the constant into
alocal variable before issuing the query (or call the service after fetching the query results). Example:

// before

var query =
from a in DataContext.GetTable<Agent>()
where a.ID = Constants.TestAgentID
select a;

// after

var testAgentId = Constants.TestAgentID;

var query =
from a in DataContext.GetTable<Agent>()
where a.ID = testAgentId
select aj;

2. LINQ query results are processed in a loop, but the loop body executes another query, either LINQ or
SQL. How to overcome: materialize the results of the query into an array or a list, and iterate over the
results when the query is completed. Example:

// before
foreach (var langId in DataContext.GetTable<Language>().Select(x => x.ID))
{

using (LanguageService.Uselanguage(langId))

{
// do something language-specific
}
}
// after

foreach (var langId in DataContext.GetTable<Language>().Select(x => x.ID).ToIDList())
{

© 2018 Ultimate 402

ULTRAATE

Developer SOLIn

using (LanguageService.Uselanguage(langId))
{

// do something language-specific

}
¥

3. Using ToArray/Tolist/TolDList inside the LINQ query. To fix the issue, the query should be broken into
parts:

// before
var dictionary = DataContext.GetTable<CalendarDayStatus>()

.Where(d => dates.Contains(d.DT))
.GroupBy(g => g.DT, e => e.StatusID)
.ToDictionary(k => k.Key, e => e.ToIDList());

// after
var dictionary = DataContext.GetTable<CalendarDayStatus>()

.Where(d => dates.Contains(d.DT))
.GroupBy(g => g.DT, e => e.StatusID)
.ToDictionary(p => p.Key);

var dict = dictionary.ToDictionary(p => p.Key, p => p.Value.ToIDList());

Unfortunately, these kind of errors are hard to detect statically. Each non-trivial LINQ query has to be
thorougly tested to make sure it doesn't open multiple parallel DataReaders at once.

© 2018 Ultimate 403

	Introduction
	Ultimate AEGIS® Architecture
	Composition logic of Ultimate AEGIS® - based solutions

	Developer
	First steps
	Means of the subject area description
	Dictionaries
	Totals
	Documents

	How to make simple metadata objects
	How to make dictionary
	Adding a dictionary to the interface
	Issuing of permissions
	Editing of standard dictionary screen forms

	How to make link tables
	How to make a document
	How to make total

	Scripts, handling of system events
	Commands
	Print forms
	Scripts of dictionaries

	Scripts of documents
	Services and interfaces
	Totals

	Creating simple commands
	Creating a command
	Adding a command to the interface
	Issuing of permissions
	Editting a script
	Accessing data via LINQ
	SQL queries
	Additional parameters query

	Developer tools
	Metadata
	Dictionaries
	Dictionary record class

	Link tables
	Class of link table record

	Document types
	Document class

	Table parts
	Class of table part record

	Totals
	Reports on the totals
	Total transaction class
	Report types

	Metadata Validation
	Metadata Cloning
	Virtual totals
	Structure overview
	Example: profits and losses
	Localization
	Virtual total description language
	Total sources, filters
	Group Sources
	Predicates
	Grammar

	Detailed description of metadata classes
	Dictionary record class
	Class of link table record
	Document class
	Class of table part record
	Total transaction class
	Classes descriptors

	Scripts
	Services and interfaces
	Services
	Interfaces
	Mobile services
	Mobile interfaces
	Kernel services
	Web services
	Web services authorization
	Web service settings
	Web services sessions
	Web services errors

	Use of services
	MEF Explorer – debugging

	Data access methods
	IDocumentManager and IDictionaryManager interfaces_2
	IDictionaryManager
	IDocumentManager

	LINQ queries
	SqlService
	Opening of new transaction
	Parallel execute request
	Filters

	Special managers
	IAuthManager
	ICalendarManager
	IClusterService
	IConstantManager
	Strong typed constants
	Other constants

	IDictionaryCommandManager
	IDictionaryListCommandManager
	IDocumentCommandManager
	IDocumentListCommandManager
	IEmailService
	IExportManager
	ILinkTableManager
	ILogger and ILogManager
	INotificationService
	IPrintManager
	ISmsService
	ITotalsManager
	IUserCommandManager
	IUserManager
	IUserMessages

	Interactive commands
	User commands
	Dictionary record commands
	Dictionary list commands
	Document commands
	Document list commands
	ClientActions

	Handlers
	Dictionary events handlers
	Document events handlers
	Transaction scripts
	Peculiarities of recording transactions
	Terminology
	Specifics of postings for money totals

	Handlers of total events
	Exception translators
	Analytic columns providers

	Tasks
	Totals and reports
	Total drivers
	ITotalDriver
	DefaultTotalDriver
	FifoTotalDriver and its child objects
	MarginTotalDriver
	CurrencyExchangeTotalDriver
	Total driver example

	Transaction validators
	Column providers
	Custom reports

	Print forms
	Integration tests
	Integration tests tools

	Client scripts
	Dictionary editor scripts
	Document editor scripts

	Update of script execution status
	Script Updated Across Clusters
	External script editor support

	Translation of exceptions
	Version control
	Versions tools
	Recompile of scripts

	Commitment of changes to current version
	Merging of versions
	Script text conflict resolution
	Version history
	Metadata error check
	Versions tags

	Predicates
	Fast access tools
	IntelliSense

	Ribbon Misc
	Hot keys
	Tag search
	Languages
	Translation manager
	Spell checker
	Exception translators
	Memory leak detector
	MEF Explorer – debugging
	Preserved objects
	Object issues

	Tracing
	KERNEL scheme
	Data types
	Dictionaries
	Localization

	Documents
	Totals
	Users
	User permissions
	Roles
	Permissions
	Predicates
	Permissions to the dictionaries
	Permissions to the totals
	Permissions to the documents
	Permissions to launch of handlers
	Other permissions
	Permissions check

	Modules of client applications
	Localization of exceptions
	Logging

	Logging operation
	Applications and modules
	Client application architecture
	Server modules
	Modules of client applications
	Client applications

	How to create modules and screen forms of main application_2
	Modules
	List forms of dictionaries
	How to create expression-subrequests in filters
	How to create list form filters
	Edit forms of dictionary records
	List forms of documents
	Edit forms of documents
	Table parts
	Custom filter
	Commands
	Custom screen forms
	Query forms for the parameters of interactive commands
	Application main form

	Mobile application
	System tools for setting of the appearance of screen forms_2
	Ultima control elements
	CommonForm
	BaseListForm
	BaseEditForm
	BaseParamForm
	BaseDictionaryListForm
	BaseFlatDictionaryListForm
	BaseTreeDictionaryListForm
	BaseDictionaryEditForm
	BaseDocumentListForm
	BaseFlatDocumentListForm
	BaseDocumentEditForm
	DictionaryHelper
	DocumentHelper
	DictionaryLookupEdit
	DictionaryLookupTreeEdit
	DictionaryMultiSelectEdit
	DocumentEllipseEdit
	DictionaryGridPanel
	DictionaryGridViewPanel
	DictionaryTreeViewPanel
	DictionaryCheckList
	DocumentGridViewPanel
	LinkTableGridPanel
	BaseTablePartGridPanel
	UltimaPanelControl
	UltimaDateEdit
	UltimaFileEdit
	UltimaTextEdit

	PostgreSQL-based version features
	PostgreSQL version limitations
	PostgreSQL development features

